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Chapter 1

Introduction

1.1 Distributed control

Exploring unknown environments and identifying potentially interesting or
hazardous areas is a challenging task for an autonomous agent. In the ab-
sence of a priori provided maps or landmarks guiding navigation, researchers
are considering multi-agent systems trying to exploit the inherent parallelism
of such systems. Many scientific research works following this direction draw
inspiration from biological swarm models. In such models, self-organised ex-
ploration strategies emerge at the collective level as a result of simple rules
followed by individual agents. To produce the global behaviour, individu-
als interact by using simple (often indirect or stigmergic) and mostly local
communication protocols. Social insects are a good biological example of
organisms collectively exploring an unknown environment, and they have
often served as a source of direct inspiration for research on self-organized
cooperative robotic exploration and path formation in groups of robots using
swarm intelligence techniques (e.g. [Payton et al., 2003; Svennebring and
Koenig, 2004; Schmickl et al., 2009; Nouyan et al., 2008]). The benefit of
such distributed techniques lies in the fact that they produce robust and scal-
able systems, contrary to traditional approaches often based on centralised
architectures and map-like representation of the environment.

1.2 Animal swarms

Swarms are formed when individuals collocate to a higher order by using sim-
ple rules (in fish e.g.: align with next fish, keep speed and distance). Swarm
formation is ubiquitous in nature and it is observed not only in highly devel-
oped vertebrate animals, but also in insects (ants: [Hölldobler and Wilson,
2009], wasps: [Gadagkar, 2001]). From an engineering point of view, it is
beneficial to analyse the global patterns observed and subsequently to break
them down into a set of simple rules governing individual agents, generat-
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ing the complex global behaviour. Recently, [Couzin et al., 2005; Couzin,
2007] proposed a model for the flocking behaviour of fish schools by essen-
tially identifying a minimal amount of information that allows biological
complex behaviours at the collective level to be digitally reproduced. The
a) repulsion, b) attraction, c) heading alignment laws do not have a proven
biological origin, yet they are incredibly successful in generating (in digital
simulations) behavioural patterns similar to the ones of real swarms. Thus,
it makes sense to consider this set of basic behaviours as a starting point to
design artificial multi-agent systems displaying flocking properties (e.g [Izzo
and Pettazzi, 2007]).

1.3 Bottom-up and top-down generation of swarm
controllers

The behavior-based control mentioned above is a bottom-up approach to
the design of swarm controllers which exploits a deep engineering knowl-
edge of the problem to construct the global behavior. The local interaction
rules among agents are engineered directly as to obtain a predefined col-
lective behavior (in this case, formation control). On the other hand, the
Evolutionary Robotics (ER) methodology [Nolfi and Floreano, 2000] allows
for an implementation of a top-down approach. ER is constantly gaining
momentum in the collective robotics community as it aims at a completely
automated design of controllers. The main tool of ER is artificial neu-
ral networks’ (ANNs) reinforcement learning via evolutionary optimisation
techniques, however, other control structures, such as rules bases can be
used. The assessment of the system’s performance does not take place via
a decomposition of the collective behaviour into individual behaviors that
are subsequently evaluated in isolation; instead, the system is evaluated as
a whole, without reference to how individuals perform. Also, ER does not
need assumptions about behavioural mechanisms agents should use, as those
are shaped by artificial evolution [Nolfi and Floreano, 2000; Ampatzis et al.,
2009]. Overall, we can say that this technique complements (and contrasts)
approaches based on the engineering of the local rules at the level of the
individual, relying on principles of stochastic optimization to obtain local
rules which self-organize into a global structure.

Arguably, the complexity, flexibility and adaptation demonstrated by
natural collective systems is unmatched by any man-made system. In con-
sequence, it may make sense to venture into the analysis of real biological
swarm models, beyond the obvious analogies and beyond simply drawing in-
spiration by biological phenomena such as natural selection or flocking. The
rationale behind the research work outlined in this report is to combine the
properties of automatic design techniques for swarm behaviour (ER) with
the imposition on the swarm of biologically realistic behavioural patterns.

7



1.4 Do only animals form swarms?

A generalized definition considers swarms as large groups of simple au-
tonomous agents interacting locally and hence may in principle include less
developed organisms such as bacteria, see e.g., [Atkinson and Williams,
2009]. From here, it is only a small step to consider a plant or parts of
a plant, like the root system, as a swarm of autonomously acting units.
Decisions of directional growth are taken in the apexes, the tips of a root
(or shoot). Indeed, in earlier times philosophers like Erasmus Darwin, the
grandfather of Charles Darwin, referred to plants as swarms ([Darwin, 1800]
cited in [White, 1979]), describing the almost autonomous behavior of single
roots and shoots forming the plant as a whole. The physiological union of
the tips of the roots of a plant (apexes) serves the greater task of support-
ing and nurturing the plant (among others). In fact, all directional growth
decisions and a majority of environmental sensing are made in the apex.
Growth patterns of roots are basically influenced by gravity, genetics, soil
conditions, and distribution of nutrients (H2O, CO2, minerals, etc.). Since
there is no anatomic evidence for a central sensing and decision unit and
considering the rather low computational capacity of a plant cell (compared
to neuronal systems of animals, for example), it appears meaningful to con-
sider the apex as a simple autonomous unit taking decisions on own account
[Baluška et al., 2004]. There is some evidence of communication between
apexes ([Davies and Zhang, 1991; Ali et al., 1999]), but a higher, centralized
brain has never been observed in plants. Yet, when looking at the root as a
collective, growth patterns are not chaotic, but seem to follow a higher order,
and emerge as a result of the individual decision-making of the apexes.

1.5 Complexity of a root–soil system

A root swarm is situated in a fundamentally different setting than fish, birds
or insects. The sensory capabilities as well as the computational powers
are tremendously reduced and on top of that the mediums properties puts
additional constraints. Therefore, a simple rule like align with your neighbor
which may be in place in fish schools, may be difficult to follow for an apex in
the absence of elaborated sensors and being situated in the sensing-inhibiting
soil. This study thus challenges the general applicability of the hitherto
known rule-sets for swarm modeling and focuses on delivering strategies for
diffuse sensing capabilities and coping with unreliable and heterogeneous
substrates.

Trying to infer basic operational principles from plants, and in this case
root swarms, for implementation on engineering the design of efficient explo-
ration algorithms has the advantage that the exploration strategys blueprint
is imprinted on the root and directly observable. Contrary to other biolog-
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ical systems for which the experimental trials have to be observed live in
order to deduce patterns in the exploration strategies, in the case of roots
these strategies are available and at our disposal right from the start. Even
if the social insect metaphor is straightforward for implementation on en-
gineering the design of efficient exploration algorithms, it suffers from an
inherent disadvantage: the exploration of an unknown terrain (or volume)
is done before the discovery of food sites, etc. and hence is very difficult to
systematically observe. If we look at the example of an ant colony optimi-
sation – here the exploitation of known food sites is regulated in a simple
and elegant manner. However, little is known how the first ants actually
located the food sites in the first spot. Obviously the “first” ant could not
make use of pre-existing marked trails. Here, only the research on individ-
ually foraging desert ants of the genus Cataglyphis might shed light onto
this fascinating problem from an insect point of view [Seidl, 2009; Wehner,
2008]. However, also here each single ant leaving the nest has to be traced
individually and so only little data is available. On top of that, Cataglyphis
continues to exploit sites individually with only little communication. The
root-system combines an easily observable foraging behaviour as well as a
complex communication structure during exploration and exploitation.

1.6 Overview of the study

In this research, we modeled a root swarm system based on simple agents
and used its principles to design a swarm robotic controller. The root model
was optimised as a multi-agent system with several goals and tasks. In our
case, these tasks are the simultaneous exploration and exploitation of the re-
sources present in the soil where the root lives and grows. Using a bottom-up
approach we obtained control structures for individual apexes, that when
cloned on all apexes can reproduce biologically plausible global root pat-
terns. Finally, we directly employed these control structures optimised in
the context of biological systems to implement the exploratory behaviour of
a swarm of robots. In this sense, our study goes beyond vague biological
inspiration into direct application of the exploration strategy used by the
biological system to the engineering application. The inherent risk of failure
of such a direct transfer is theoretically mitigated by millions of years of
evolution of the root exploration strategies; in practice, the results from this
study confirm the applicability and efficiency of this algorithm.
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Chapter 2

Soil Exploration &
Exploitation by a Root
System

As previously mentioned, the physiological union of the tips of the roots of a
plant (apexes) serves the greater task of supporting and nurturing the plant
(among others). All directional growth decisions and a majority of environ-
mental sensing are made in the apex. Growth patterns of roots are basically
influenced by gravity, genetics, soil conditions, and distribution of nutrients
(H2O, CO2, minerals, etc.). Since there is no anatomic evidence for a cen-
tral sensing and decision unit and considering the rather low computational
capacity of a plant cell (compared to neuronal systems of animals, for ex-
ample), it appears meaningful to consider the apex as a simple autonomous
unit taking decisions on its own account [Baluška et al., 2004]. There is
some evidence of communication between apexes [Davies and Zhang, 1991;
Ali et al., 1999], but a higher, centralized brain has never been observed in
plants.

Considering a plant as a swarm of individuals is not a new concept, as
it was firstly described in 1800 by Erasmus Darwin [Darwin, 1800]. At that
time, plant-philosophers discussed the individual ‘minds’ of plant apexes
(mostly those of the sprout) and their power to turn into an entire plant when
cut off and put into soil as joining a greater organism and functioning similar
to a swarm of individual animals. In later discussions this swarm concept
was dismissed as a philosophical concept but still the absence of a central
master mind and the distribution of decision loci led to the formulation of
meta-population to characterize plants [White, 1979].

Analyzing and subsequently simulating root growth has been in the fo-
cus of previous research [Pagès, 2002] (root analyses, e.g.: [Berntson, 1994;
Coutts, 1983; Doussan et al., 1998; Ozier-Lafontaine et al., 1999; Lynch,
1995; Pregitzer et al., 2002]; growth and branching simulations e.g.: [Pagès
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et al., 1989; Lynch et al., 1997]). The major justification for these analyses
derives from agricultural/physiological questions on root efficiency, soil ex-
ploitation, nutrient uptake per volume root, etc. The main means used are
fractal methods, i.e., describing root architecture as a fractal. This work
nicely models root architectures, also able to incorporate lack of nutrients,
CO2, water etc. However, this technique involves recursive formulation and
hierarchical levels and although the simulations of roots match quite well
the observed growth patterns in real plants, it does not reflect the decision
processes actually going on during root growth.

Trying to infer basic operational principles from plants, and in this case
root swarms, to design efficient exploration algorithms has the advantage
that the exploration strategy’s blueprint is imprinted on the root and thus
directly observable. Contrary to other biological systems for which thou-
sands of experimental trials have to be observed in order to deduce patterns
in the exploration strategies, in the case of roots these strategies are available
and at our disposal right from the start. Even if the social-insect metaphor
is straightforward for implementation on engineering the design of efficient
exploration algorithms, it suffers from an inherent disadvantage: the explo-
ration of an unknown terrain (or volume) is done before the discovery of
food sites, etc. and hence is very difficult to systematically observe.

2.1 The root system

The ability of the root system to perform its key roles, the capture of wa-
ter and nutrients from the soil and providing anchorage for the shoot, is
strongly dependent on its root architecture, i.e. the spatial distribution of
roots within the soil. It is estimated that, globally, only 30-50% of the ap-
plied nitrogen fertilizer and ∼45% of the phosphorus fertilizer is taken up
by crops [Tilman et al., 2002] with the losses contributing to greenhouse
gas emissions and diffuse pollution of the aquatic ecosystems, as well as
representing enormous economic wastage. Unfortunately, root traits are no-
toriously difficult to select for in breeding programmes but there is now con-
siderable interest in the opportunities for improving crop root architecture
through new approaches [Lynch, 2007]. However for this to be an achievable
goal, it is crucial that we start with an understanding of the complexity of
the processes that contribute to building a root system that is as complete
as possible.

The ability to occupy space depends on several root characteristics, in-
cluding relative growth rate, biomass, fine root density, and total surface
area. A unique property of plants is their lifelong ability to grow and to
continuously develop, elaborating on the basic body plan of the embryo.
Therefore plants depend on the incessant activity of confined populations of
stem cells located at opposite ends of the apical-basal body axis.
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Figure 2.1: Schematic representation of the root structure

The first step towards root formation is the establishment of the apical-
basal axis of the developing zygote [Waisel et al., 2002]. In the root of
the herbaceous dycotiledonous model plant Arabidopsis thaliana, a small
amount of stem cells generate all the different tissues that can be distin-
guished along the symmetrical radical axis. Because of their rigid cell walls,
the stereotype division pattern of the root cells organize the separate tissues
in concentric columns of cell files. From outside to inside these layers are
designated by lateral root cap, epidermis, cortex, endodermis, and pericycle
as the cell files that surround the central vascular tissue. Clonal analyses and
ablation studies indicate that cell lineage does not necessarily determine the
cell fate and pattern formation, but that plant cells are flexible and rather
rely on positional information for adopting their final fate. At the basal end
a set of stem cells gives rise to the central portion of the root cap, known as
columella. Internal to, and contacting all the stem cells ,is a small number
of mitotically less active cells, the Quiescent center (QC, Figure 2.1).

Along the apical-basis of the root, stem cells daughters continuously
travel through time, crossing the zone of cell division (meristematic zone),
the zone of cell expansion and elongation (elongation zone), and ultimately
meet their destiny in the differentiation zone.

2.1.1 Root architecture

How is the root system architecture generated though the distribution and
activity of root meristems? The term “meristematic wave” describes the
propagation of root meristem activity through the soil [Dupuy et al., 2010a].
The meristematic wave may be a fundamental trait of plant root systems.
The growth of an individual root occurs through cell division within the api-
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cal meristem and cell expansion close to the apical meristem. Newly created
tissue eventually becomes rigid as cells differentiate. These developmental
processes constrain the direction of advancing root growth and the perma-
nent location of the root produced. Single meristems are pushed by this
indeterminate self-organized process, and the advancing meristems of sev-
eral roots combine to constitute the simplest form of a meristematic wave.
The barley root system produces meristematic waves traveling through the
soil. The models and simulations suggest that meristematic waves can be
produced by the repetition of simple developmental rules in individual roots.
Plant roots must acquire resources distributed heterogeneously in the soil
volume. Plant species imply diverse root system architectures to explore
space and optimize resource acquisition. Plants with highly tropic roots or
with a smaller branching angle, explore space locally and can be more ef-
ficient in exploiting localized patches of resources in the soil. By contrast,
the root systems of plants whose roots vary in their expansion rates (for ex-
ample, through changes in diameter or in the branching order), or of plants
that produce adventitious roots, proliferate more diffusely through the soil.
Such spatial and temporal limitations to the generation of root system ar-
chitectures are manifested in the contrasting strategies of plant species to
intercept and exploit soil resources.

The region of highest root activity defines the envelope of the soil volume
being exploited intensively by a root meristem. This volume is of fundamen-
tal importance to resource acquisition. The ability of the plant to sense the
availability of water, nitrogen and phosphorus resides close to the root apical
meristem, which allows the development of lateral roots into resource-rich
patches [Hodge and Fitter, 2010]. The availability of mineral nutrients is
usually higher at the root apex, and living root hairs, which contribute
greatly to mineral uptake, are present predominantly at this region. The
root apex is also the site of higher exudation of organic compounds [Badri
and Vivanco, 2009], enzymes and mucilage, increased microbial activity and
the aoplastic uptake of calcium and zinc.

Most architectural models predict root system development by simu-
lating the incremental growth of independent tissues over time. In such
models, the architecture of roots is explicit, and this allows complex anal-
ysis to be undertaken. For example graph theory concepts can be used to
analyze uptake efficiency, and physical models can be developed to study
local interactions between roosts and the soil [Dupuy et al., 2010a].

While explicit descriptions of root architectures are convenient to dissect
biophysical, physiological and developmental processes, they have certain
limitations. Architectural models require accurate measurements of single
organ properties, which make them difficult objects to parameterize. The
computational time required to generate the architecture of a plant root
system depends on its size, and therefore applications have been restricted
to a single plant level. Architectural models also generate complex struc-
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tures and understanding their emergent properties can be difficult. Finally,
architectural models produce a single and unique description of a root sys-
tem for each simulation, which makes them difficult for studying the general
properties on plant populations.

The root distribution models of [Hackett and Rose, 1972] and subse-
quently the reaction-diffusion models [Heinen et al., 2003], attempted to
address these issues. However none of these models explicitly incorporated
root developmental processes. Describing root architecture in terms of diffu-
sion incorrectly assumes that root expansion rate is proportional to gradients
in root length density, and neither the root length density branching density,
expansion rate and branching rate generate root system architectures.

The success of models incorporating root architecture have also created
a need for different types of models and approaches, and also for realis-
tic parameter values for a range of crops. For example models assisting
breeding strategies, and models of population dynamics involve simulation
of large number of single plants simultaneously. This is still a huge com-
putational challenge for architecture models because the functioning of all
organs is computed explicitly. Effective model of plant soil interactions also
requires coupling discrete structures, roots to continuous descriptions of the
environments. Other forms of spatial models that could provide efficient
solution of these problems, continuous-based approaches in particular, have
not developed at a comparable rate.

2.1.2 Lateral root development

Lateral root development encompasses the formation of lateral roots from
the cells of a parent root, and the regulation of the respective steps. Are
the sites of lateral root founder cells predetermined, or are certain cells
triggered by signals that occur during plant growth, or both? What deter-
mines the spacing of the lateral roots? What regulates the distribution of
overall root mass in the soil? Each of the above questions must take into ac-
count plants’ response to the environment, as we know that even genetically
identical plants make very different developmental decisions when grown
under different conditions. This developmental plasticity is a mark of plant
development and is clearly seen in the regulation of lateral root formation
[Malamy, 2005]. A role for environmental signaling in regulating lateral root
formation makes intuitive sense, as this allows plants to optimize the place-
ment of the roots in accordance with the complex and frequently changing
soil environment. Hence to truly comprehend the lateral root formation it
is necessary to understand the development and environmental cues that
contribute to the regulation of this process and the way in which these cues
are integrated.

A model for developmental plasticity in the root system, or indeed in
any other plastic organ, has been proposed by [Malamy, 2005]. First, de-
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velopmental signaling pathways can be considered to be hard-wired into the
plant. They determine the possible root system phenotypes for that plant
genotype, and therefore should be consistent among genetically similar indi-
viduals. The existence of such pathways defines, for example the maximum
size of branchness that can be attained by the root system of a given plant
species. The hard wired pathways are referred to as intrinsic pathways.
In contrast environmental pathways might influence lateral root formation
by modulating components of the intrinsic pathways. In the model, these
components act as nodes to integrate environmental signals with intrinsic
developmental programmes and to coordinate root system morphology with
growth conditions.

2.2 Effect of nutrient availability on root develop-
ment

The degree to which root development is responsive to a wide range of en-
vironmental factors, including water and nutrient availability, is regarded
as a primary example of the phenomenon of phenotypic plasticity [Malamy,
2005]. Phenotypic plasticity, defined as variation that is due to environmen-
tal effects, is conventionally considered to be the only nongenetic component
of phenotypic variation.

Land plants grow in soil where water and mineral nutrients are het-
erogeneously distributed. Plant survival, growth and fecundity are largely
conditioned by the ability to acquire these resources effectively. The archi-
tecture of a plant root system affects its ability to access these resources,
and there is considerable evidence linking root architecture properties with
the efficient acquisition of water and nutrients. However the fundamental
mechanisms controlling root architecture and acclimation to the prevailing
environmental conditions is complex and poorly understood.

Root architecture results from the activity of apical meristems and is
produced through a sequence of expansion and lateral initiation events at
the proximity of root apices. Newly created roots are placed rigidly in the
soil and the final form of the root system is a direct consequence of the pat-
terns of root expansion and lateral root initiation in the proximity of root
tips. Because mature roots are immobile, it is essential that meristematic
activity is controlled and coordinated in conjunction with local soil prop-
erties. For example, the efficient acquisition of water and essential mineral
nutrients requires the ability to detect resource-rich patches and concentrate
growth within these patches [Hodge and Fitter, 2010]. How the plant con-
trols the behavior of its meristems is therefore crucial for understanding the
plasticity of root architecture. The detailed mechanisms by which water
and the availability of the mineral nutrients are sensed by the plants remain
poorly understood. However there is increasing evidence that the sensing
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(a) Distinct parts of the root involved in the formation of lateral roots

(b) Longitudinal section of a main
root with several lateral roots

(c) Detail of the lateral root forma-
tion with the origin in the pericycle

Figure 2.2: Lateral root development
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mechanisms are located at the root apices [Dupuy et al., 2010a].

2.2.1 Root system and water

Evolutionary adaptation is an intrinsic response to environmental change.
The environments in which plants grow have changed and are changing
continuously. These conditions may even vary locally in very heterogenous
soils. Under such unstable and unpredictable conditions plants have evolved
and developed phenotypical plasticity as a valuable capability that allows
adaptation to adverse physical and chemical environments they face.

Root system evolution is a notable process that has lead to a progressive
transformation from the very simple root systems of early land plants to
the diverse and complex root systems of the modern plants. Ancient plants
did not face difficulties in getting water or nutrients let alone to efficiently
anchor to the substrate as long as they kept growing in humid habitats.
Modern day plant root systems have been modulated from distinct ancestors
and by different evolutionary pathways influenced by environmental cues,
leading to varied root systems architectures. For example the root system
of most gymnosperms developed a tap root in which the embryonic root
matures and becomes a primary root. From this primary or tap root, lateral
roots emerge and the root system is formed. Under optimal environmental
conditions, when nutrients and water are not limiting, the primary root
grows continuously downward reaching deeper than the lateral roots. This
growth pattern is called indeterminate and can be drastically altered by the
scarcity of water and nutrients.

In contrast, the tap roots of monocotyledons have short life spans and the
root system develops from post-embryonic stem-born roots that grow above
or below ground, giving rise to branches that build a root system, called
fibrous, in which no specific root grows longer than the others. Aerial roots
stabilize the main stem and are also capable of branching and absorbing
nutrients and water.

Increased root system size through increased lateral root formation and
or growth extends the area explored by the root system. Increased density
of shallow roots allows the plant to absorb surface water that is subject to
rapid changes in availability through rain and evaporation, while the root
system that penetrates to greater depths in the soil profile can only absorb
“stationary” water. The correlations between root system traits and plant
yield are highly dependent on the environment.

Although many published studies deal with manipulating water avail-
ability to plants, we still have a poor understanding of how and under what
circumstances competition for water occurs. Paying greater attention to the
mechanisms of competition for water and measuring the strength of below-
ground competitive interactions under different conditions of water availabil-
ity should determine whether competition really does increase across spatial
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or temporal gradients in soil moisture and the extent to which the increase is
explained by correlated changes in plant growth or biomass. It is important
to separate the phenomenon of water availability from plant competition
for water; that water limitations may be greatest in arid systems does not
necessarily mean that competition for water is greatest there.

Deep roots may allow plants access to a water source available after
upper soil layers dried out, enabling them to decouple the timing of growth
from rainfall events, persisting after neighboring species have died or become
dormant. Examples of temporal partitioning include early and late season
annuals in the Mediterranean climate of California, shrub species of the
Great Basin, and various trees [Dupuy et al., 2010b].

2.2.2 Root system and nitrogen

Nitrogen is one of the most important elements for plant mineral nutri-
tion and is mainly present in soils in the organic form and as nitrate and
ammonium. However, the availability of these compounds in the soil is
poor because of the microbial community. Nitrogen limitation affects vital
metabolic processes related to energy in plants, such as photosynthesis and
respiration.

In order to deal with N deficiency plants establish symbiotic and non-
symbiotic relations with soil microorganisms, such as bacteria and fungi.
Another general response of plant root systems to N deficiency is the increase
in root surface and size (total mass, length and area) and root depth, both
important factors that allow the interception of nitrate leached from the
soils.

The availability of N sources depends on ecological factors such as soil
composition and environmental conditions. For example in soils under
anaerobic and humid conditions and with low pH and temperature, nitrifi-
cation is inhibited and soil ammonium concentrations increase [Miller et al.,
2008]. Nevertheless, the concentration of nitrogen in the rhizosphere is het-
erogeneous in space and time [Cruz et al., 2007]. Nitrate is localized in
randomly distributed patches. When a mature lateral root meets a nitrate
rich patch, an increase in lateral root elongation occurs, suggesting a posi-
tive regulation of root meristem proliferation, whereas the rest of the root
axis does not change dramatically. In contrast when plants are grown under
a low, uniform nitrate supply, an increase in lateral root proliferation in
the entire root axis is observed. Thus N availability regulates the root sys-
tem architecture at least via two distinct pathways: one triggered by local
sensing of the N status and one regulated by systemic processes.

The first steps to understand root developmental response to N avail-
ability have involved the study of lateral root formation at the tissue level.
It is known that root systems responds not only to N supply but also to the
molecular N source [Cruz et al., 2008]. Root density and extension of the root
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system of maize seedlings are larger in nutrient solutions containing ammo-
nium than in those containing nitrate as the sole nitrogen source suggesting
that cell division at the root apical meristem might be more rapid when
ammonium is used as the nitrogen source, perhaps because ammonium as-
similation is less energy demanding than nitrate [Domı́nguez-Valdivia et al.,
2008]. The responses in root development in response to differential supplies
of nitrogen has been proposed to be caused by the altered redox potential
or pH during N uptake rather than by a direct influence of either nitrate or
ammonium [Cruz et al., 2006].

Although future research in this area is needed, recent reports have con-
tributed to the understanding of the complex and coordinated response of
plant root system to N availability mainly in relation to the regulation of
lateral root initiation, meristem activation and root elongation. Strong ev-
idences point towards nitrate eliciting a systemic signal to regulate root
growth.

In Arabidopsis and tobacco the growth rate of the primary root is al-
most insensitive to a uniform nitrate supply. However, relatively to shoot dry
weight, primary root length slightly decreases as the uniform nitrate avail-
ability increases. In contrast in roots that encounter a high nitrate patch,
primary root growth does not change. Therefore lateral roots might have a
lateral nitrate sensory mechanism that enable them to modulate meristem-
atic activity in response to localized sources of nitrate while the primary
root tip might lack one or several components of this regulatory pathway.
However effects of glutamate on root development, including lateral and pri-
mary root growth inhibition resulting in a short and highly branched root
system [Filleur et al., 2005]. Root tip cells might be able to sense extra cellu-
lar glutamate that triggers a reduction in the rate of cell production and/or
cell expansion and, therefore, promotes rapid colonization of the soil patches
with high nutrient concentrations. Besides these advances, a detailed anal-
ysis of the developmental changes in primary root length as a consequence
in modification of cell size, or cell number remains to be carried out.

In the case of maize, an increase in dry mater accumulation has been
observed when one root axis has been supplied with nitrate in split root
experiments. This dry matter accumulation was not attributable to growth
of the primary axis but to increase of lateral root growth. Also, the maize
primary seminal root showed a greater extension rate in relation with both
nitrate and ammonium supplies, in contrast with the elongation rate in roots
without nitrate, suggesting that the elongation is nitrogen dependent and
that this nutrient is acquired from the growth medium and not from in-
ternal sources, because in this region of the root the phloem system is not
fully developed to supply the necessary nitrogen from mature tissues. Fur-
thermore, [Tian et al., 2005] reported a decrease in root length for primary
seminal and crown roots when the N supply increased from 0.05 to 20 mM
for two contrasting genotypes. A positive correlation between the quantity
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of nitrate applied and the internal cytokine concentration has also been ob-
served, establishing a possible role of cytokine in the nitrate-mediated root
growth found for the most responsive genotype.

Changes in lateral root growth in nitrate patches has been reported in
several plant species, including Arabidopsis and maize, barley legumes, cit-
rus, rice and tobacco [Hodge, 2004] and some components of the signaling
and regulation pathways have been described. Through split root system
experiments, nitrate riched patches and homogeneous nitrogen supplied to
one axis of the root were both found to produce an increase in lateral root
formation and elongation. In barley this has also been observed in response
to ammonium. In Arabidopsis the response has been proposed to be specific
to nitrate, because neither ammonium nor glutamine stimulates lateral root
growth [Tranbarger et al., 2003]. Nitrate might be a key signal molecule ca-
pable of inducing changes in the developmental programme of plants when
they are grown in heterogenous soils because of the relative mobility of this
molecule when compared to the low mobility of ammonium or glutamate.
This response might facilitate the uptake of nitrate from the soils where
nitrate is produced from immobile organic compounds and/or ammonium
as the result of bacterial activity and chemical reactions, directing lateral
growth to these patches [Miller et al., 2008]. Furthermore, when Arabidopsis
seedlings are grown in homogeneous nitrate conditions, particular responses
depending on the level of nitrate limitations have been reported. Transfer of
Arabidopsis seedlings from high to very low nitrate concentrations triggers a
response in lateral root length, whereas transfer to medium nitrate increases
lateral root initiation, reflecting the existence of levels of regulation related
to homogeneous low nitrate availability. Regarding lateral primordia initia-
tion, the histology of lateral root formation and pericycle cell differentiation
has been studied. It is known that high nitrate patches increase lateral root
density.

The role of nitrate as a signal molecule is supported by the response
of tobacco- and Arabidopis-lines with very low nitrate reductase (NR) ac-
tivity, and thus with limited capacity to metabolize nitrate. The higher
accumulation of free nitrate in shoots of transgenic lines with low nitrate
reductase activity growing under both low and high nitrate conditions in-
hibited lateral root growth similarly to that observed in wild-type plants
growing under high nitrate conditions. This points to nitrate as a signal
molecule capable of developmental responses in roots. Such a role in long
distance signaling has been demonstrated in split root system experiments
in which the accumulation of nitrate in the shoots, but not in the roots, trig-
gered lateral root development initiation over all the root system. Therefore
a dual system has been proposed for controlling the developmental changes
in nitrate availability: one locally induces lateral root elongation by high ni-
trate patches and one involves a systemic signaling that mediates repression
of the meristematic activation of lateral roots that depends on the nitrate
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levels in the shoots. To date the regulation of lateral root development by
internal and external nitrate levels has been reported at three stages: lateral
root primordia initiation, emergence of meristem activation, and lateral root
elongation.

[Malamy and Ryan, 2001] reported that when Arabidopsis seedlings are
growing on media with a high sucrose to nitrogen ration, lateral root initia-
tion is repressed, thus implying a possible role of sugars or sugar-n balance
in root responses to nitrate availability.

A possible role for ABA in nitrogen-mediated root formation and growth
has been proposed. Lateral root development is less repressed by high nitrate
in the ABA-sensitive Arabidopsis mutants abi4 and abi5. This de-repression
occurs when plants are grown in concentrations under 1 mM nitrate, whereas
under low concentrations, the phenotype of both mutants and wild-type is
similar. These results also relate nitrate responses with sugar signaling
because ABI4 seems to be involved in sugar signaling.

Also a role of the hormone auxin in lateral root development in function
of nitrate availability has been demonstrated by showing that AtNRT1.1
possesses a functional auxin response element and is transcriptionally in-
duced by exogenous auxin. Also the axr4 mutant of Arabidopsis does not
respond to a localized supply of nitrate, suggesting a role for auxin in lat-
eral root development in response to the nitrate supply [Zhang et al., 1999].
Additionally an increase in IAA levels has been observed when roots of Ara-
bidopsis seedlings are transferred from high nitrate to low nitrate concen-
trations when compared with those maintained in high levels implying that
auxin is necessary at some checkpoint for lateral root elongation [Walch-
Liu et al., 2006]. However these results are in contrast to those obtained by
[Linkohr et al., 2002] who observed that axr4 seedlings respond to a localized
nitrate supply in the same way as the wild-type.

The sensing of external nitrate concentrations, has for example been
found to be regulated by the ANR1 gene, which is expressed in the root
tip [Forde and Walch-Liu, 2009]. Similarly a series of experiments by [Svis-
toonoff et al., 2007] has demonstrated that physical contact of the Arabidop-
sis root tip with phosphate is necessary and sufficient to are the growth of
primary roots, and that low phosphate root (LPR) genes are involved in this
response.

2.2.3 Root system and phosphorus

Phosphorus has a fundamental role in most developmental and metabolic
processes in plants. It is not only a constituent of key cell molecules, but it is
also an essential metabolic regulator of several processes (protein activation,
energy transfer and carbon and nitrogen metabolism). Moreover P availabil-
ity represents one of the major constrains for growth and development of
terrestrial plants in both natural and agricultural ecosystems due to its low
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mobility and high absorption capacity by the soil. The environmental chal-
lenge imposed by P availability in the soil was a major selective pressure for
plants to evolve a range of developmental, biochemical and symbiotic strate-
gies to adapt to P deprivation. In both mono and dicotyledonous plants, a
general strategy to cope with low P availability has been described [Wissuwa
et al., 2005] that involves three fundamental mechanisms:

1. Release and uptake of phosphate from organic and inorganic sources;

2. Optimization of phosphate utilization by a wide range of metabolic
alterations and mobilization of internal P;

3. Increase of the root’s exploratory capacity through an increased root
area.

The first mechanisms involve biochemical responses directed to augment soil
phosphate availability by increasing P uptake capacity through the induc-
tion of high affinity phosphate transporters, P recycling and P mobilization
through the synthesis and excretion of phosphatases, RNAses and excre-
tion of organic acids. The second mechanism involves the utilization of al-
ternative glycolytic pathways that involve phosphate-independent enzymes,
changes in carbohydrate metabolism, and the hydrolises of phospholipids to
release phosphate for other metabolic processes and their replacement for
non-phospholipids such as sulfolipds and galactolipids. Recently microar-
ray analysis in Arabidopsis confirmed that genes involved in several of the
previous processes are transcriptionally up-regulated by phosphate starva-
tion [Amor et al., 2009]. From 732 differentially regulated genes, 501 are
up-regulated and 231 are down-regulated. Genes involved in the lipidic hy-
drolysis and galacto- and sulfolipid synthesis are up-regulated by phosphate
deprivation.

To face phosphate stress, many plants adapt their root system develop-
mental programme towards the formation of shallow and highly branched
root system that increases the soil exploratory capacity of the plants. Phos-
phate dependent root architecture alterations have been studied in diverse
crop systems and despite discrepancies most root systems experience an
increase in adventitious root and lateral root density under P limiting con-
ditions [Eissenstat et al., 2000]. Under natural conditions these alterations
are though to be directed to maximize P acquisition as it becomes limited
in the soil.

2.3 Root behaviours

2.3.1 Apex–soil interaction

Modelling fish or bird swarms only mildly requires considerations of the
properties of the substrates the animals move in (like fluid density and sen-
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sory range). In running insects, the only boundary conditions are that the
animals can only locomote on rigid surfaces but not freely within space; stig-
mergic olfactory cues are always located on the ground, visual senses are not
restricted by blurring effects. What might sound trivial turns into a huge
problem under ground: The 3D space shows different levels of accessibilities
due to soil compactness, sensors can not reach very far as a result of the
high density of the medium and signals might be diffusing inhomogenously.
For example, we know that gravity is a downward driving force for birds but
is almost perfectly balanced for fish and irrelevant for ants. Roots however,
use gravity as a primary navigational cue as they emerge from the air-soil
interface and head into the soil. The soil, however, is a much more com-
plex medium than those mentioned before and hence requires full attention.
Soils are not homogeneous, displaying increased compactness with increased
depth, but also contain patches or layers of different mechanical properties.
Different soils and soil-states additionally exhibit different capacity for nu-
trients and water. Without an appropriate representation of the soil, it will
be impossible to model and understand root growth. Understanding the
mechanical properties of root growth are key to their reaction to soil me-
chanics. A rather recent approach to the modelling of soil biophysics was
undertaken by Pierret and co-workers [Pierret et al., 2007]. Finally, each
root system must maintain a static equilibrium balancing the weight of the
plant and additional dynamic loads the plant is exposed to. The area may
have a certain topology which makes access to certain places easier than to
others. The fine structure of the substrate may allow easy locomotion in
one place but inhibit it in another one - despite similar topology. Similar,
but situated at the extreme, are obstacles which are not accessible to the
plant at all, as outlined in the point below. Taking our goal of controlling
e.g. rover motion we see great similarities in the way that also a rover lo-
comoting on a surface may encounter variations in the ease with which a
certain type of substrate can be driven on and hence need to be taken into
account and plan a detour.

2.3.2 Negotiating obstacles

Obstacles are an extreme of compact soil patches. In the worst case, rocks
display a region of in-accessibility to the apex which needs to be circum-
vented to continue growth and soil exploitation. Coping with obstacles is
hence critical for the overall performance. The effect has been known for
over a hundred years but the mechanisms were only briefly described. Fa-
lik and co-workers [Falik et al., 2005] demonstrated that roots of Pisum
sativum detect and avoid obstacles by a mechanisms of self inhibition. Al-
lelopathic exudates accumulate in the vicinity of obstacles (as their diffusion
is obstructed) and growth toward the obstacle is in consequence inhibited.
Pierret and co-workers [Pierret et al., 2007] have implemented a similar
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mechanism in their simulation mentioned above.

2.3.3 Exploiting nutrient patches

Finding nutrients is a major task of a root and important for the success
of a plant, exploiting scientifically interesting sites is the major task of any
exploratory mission. Every mission tries to answer more than just one sci-
entific question, but the sites relevant to find answers might be different.
The root’s strategy to find and exploit nutrients in a balanced way is crucial
to its overall performance.

Accessing the nutrients distributed within the soil is actually one of the
major tasks a root has. Indeed, nutrients do not behave homogeneously and
make foraging a challenge. Basic nutrients are Nitrogen and Phosphate,
but also the availability of Water and Oxygen play a role. Some of these
are volatile and get distributed and subsequently washed out by water, oth-
ers are rather equally distributed and do not follow water dynamics. Other
nutrients appear in patches or layers and need to be precisely located [López-
Bucio et al., 2003]. In summary, each component requires its own foraging
strategy. Patches with increased nutrient concentration trigger roots to pro-
liferate compared to roots of the same plant outside that zone [Hodge, 2006,
2004]. A similar behaviour is observed with toxic or poisonous substances.
Although they chemically belong to the group of nutrients, toxic substances
trigger similar avoidance behaviors as solid obstacles do, as is the case with,
e.g., Aluminum [Miyasaka and Hawes, 2001].

2.3.4 Self/non-self recognition

A root system of a plant needs to coordinate the growth of the individual
apexes - when and where to proliferate, how to balance growth between
apexes, which apex to ‘send’ into a certain direction. All these decisions re-
quire that a root is capable of recognizing the presence of other roots around
it. These roots may be of the same plant or of foreign plants, these plants
again may be of a close kin or a potential aggressor. Self recognition of roots
is mediated internally, i.e., via the direct connection of the roots upstream.
As soon as this connection is lost, the recognition as self fails [Biedrzycki
et al., 2010]. Recognition of foreign roots happens through exudates, mes-
senger molecules, in the soil. Young seedlings of Aradbidopsis thaliana were
confronted with exudates from (i) siblings, (ii) strangers, and (iii) own exu-
dates. Roots encountering the stranger’s exudates showed increased forma-
tion of lateral roots in comparison to those encountering sibling’s exudates
[Biedrzycki et al., 2010]. These exudates are actively secreted and can be
deactivated by inhibitor substances. The reaction of roots when interact-
ing with self, kin or strangers is seen as a strategy to increase individual
fitness by maximizing resource exploitation in a competitive environment
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despite the fact that reactions differ between species [Callaway and Mahall,
2007; Lynch, 1995]. Do robots of a collective mission seek each other to
support each other, or shall they exhibit avoidance behaviour and literally
not disturb their colleagues and re-screen a previously analysed area? These
questions can only be answered by the type of mission that is intended and
similar is the plants’ behavioural repertoire. We will need to analyse reasons
for different behaviours of apexes in sight of their kin.

2.3.5 Root–shoot interaction

Root and shot equally form the entity of the plant, standing in direct and
constant bi-directional interaction. Downstream, the major signalling hap-
pens in form of the availability of photosynthetic products, high energetic
carbon-hydrates which are used for growth or stored. The upstream sig-
nalling is more complex and also of higher relevance for our modelling ap-
proach. Root signals in the form of signalling molecules move to the shoot
within the transpiration stream ([Bacon et al., 2002], but also slow-travelling
electric signalling in plants is discussed). Although the transpiration stream
moves rather fast, it can take days to transmit a signal from the root of a
tall tree to the tips of the shoot. The strength of any stream-related signal
depends on the concentration of the signalling substance within the liquid
but apparently, daily variation of transpiration rate can be compensated for
[Freundl et al., 1998] and the signal kept constant. Common signal molecules
are abscisic acid (ABA) and ethylene (e.g. [Dodd and Davies, 1996]). For
example, ethylene concentration rises in the presence of root stress and pos-
sibly regulates plant growth in drying soil [Spollen et al., 2000; Hussain
et al., 1999]. The analogy may be found in the interaction of a swarm of
robots with its mother-base, which is actually waiting for the products, i.e.
the data collected. Here this might be realized in a form of a relay station
to earth, which also supplies the rovers with energy for a new excursion.
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Chapter 3

Cellular Automata modeling
of Soil & Root dynamics

To proceed with a study of root dynamics, we created a computer model that
would allow us to experiment with potential apex behaviours, and observe
their performance in exploring for and exploiting the resources available in
different soils. The approach followed in the creation of the model was that
of Cellular Automata (CA) modeling. In Cellular Automata, a universe
of cells is simulated, where all cells are at any given instant in one of a
finite number of states. Update rules specify how to update cell states,
at discrete time steps, as a function of their present state, and those
of their neighbouring cells. Table 3.1 presents how these components
traditionally found in CA [Wolfram, 2002] translate into our model of soil
and root dynamics.

3.1 The Soil

A root is a complex structure that cannot be fully understood in isolation
from the soil in which it grows. It is therefore vital to include in the simulator
a representation of the soil and a modeling of its dynamics. This section
focuses on the description of how the soil is represented in our model. Section
3.1.1 describes how the soil is structured, and Section 3.1.2 lists the features
that were chosen to characterize it. The process used to randomly generate
initial soil configurations is presented in Section 3.1.3. Finally, Section 3.1.4
explains how to interpret our visualizations of soil configurations.

3.1.1 Structure

A volume of soil is represented in our simulation by a two-dimensional lattice.
This lattice represents a depth-cut, with the surface level being at the top,
and successive rows increasing in soil depth. The soil is discretized into
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Soil Root
coupling of
Soil & Root

Universe
2D hexagonal lattice binary tree the soil’s hexagonal

lattice with the root’s
binary tree overlayed
on top

Cell
soil patch (an
hexagon)

root segment (a tree
node)
apex – a leaf node in
the tree
shoot segment – the
tree’s root node

soil patches, and root
segments

Cell Neighbourhood
a soil patch has as
neighbours the 6 soil
patches immediately
adjacent to it

a root segment always
has as neighbour the
segment from which it
grew (its parent node
in the tree), plus up
to two other root seg-
ments that grew out
of it, if any (its child
nodes in the tree)

soil patches: acquire
as additional neigh-
bours all the root seg-
ments that grow into
it;

root segments: acquire
as additional neigh-
bours the soil patch
in which they are con-
tained, plus its sur-
rounding soil patches

Cell State
amounts of Water, Nitrogen & Phosphorus

Cell Update Rule
no updating of soil
patch states (soil→soil
diffusion) was imple-
mented in this project

(b) root segments
diffuse internally
materials to neigh-
bouring root segments
(root→root diffusion)

(a) apices potentially
grow new root seg-
ments, thus changing
the root’s Universe;

(c) root segments ex-
tract materials from
the soil (soil→root dif-
fusion)

Table 3.1: Correspondence between standard Cellular Automata elements
and elements of the modeled entities

27



(a) Two dimensional hexagonal lattice representing the
soil. The surface is above row 0, and successive rows
increase in depth. The shown coordinates index soil
patches’ locations in a regular matrix. The hexagonal
lattice is thus implemented by considering an horizon-
tal displacement on odd numbered rows [Jahn, 2002].

(b) Definition of a soil
patch’s neighbourhood.
The neighbours to the
dark grey soil patch are
shown in light grey.

Figure 3.1: Soil structure

individual units that are from hereon designated as soil patches. A soil
patch will have a hexagonal shape, and will be assumed to represent some
volume of soil (see Figure 3.1a). The neighbours to a soil patch are the six
patches immediately adjacent to it (see Figure 3.1b).

The real-world dimensions of a soil patch should be such that an apex
of the modeled plant, from its location inside a soil patch should be able
to perceive the overall conditions in all the neighbouring soil patches. This
capacity is necessary for root apices to be able to evaluate their context and
take the appropriate growth decisions.

The reasons for implementing soil as an hexagonal lattice, rather than
with the more straightforward square lattices, are due to their isometric
properties, and their reduced number of neighbours. While the standard
Moore neighbourhood for square lattices considers eight neighbours, not all
of which lie at the same distance from the centre, an hexagonal lattice allows
us to consider only six equidistant neighbours. This simplifies the modeling
of soil dynamics, and also reduces the complexity of root apex controllers
(see Section 4.1).

In terms of implementation, the soil is still represented as a square ar-
ray, but as one where a horizontal displacement is considered to be present
on odd numbered rows (see Figure 3.1a for an illustration). A process is
implemented as described in [Luczak and Rosenfeld, 1976] for converting
between the array’s Cartesian and hexagonal coordinate systems, and using
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Figure 3.2: Contour plots of two randomly defined initial soil configurations
(only the ‘Water’ state variable is shown here for each soil patch). Config-
urations obtained by randomly scattering 32 peaks in a soil of 33 by 33 soil
patches.

that information neighbourhoods can then be calculated [Pazera, 1999].

3.1.2 State variables

Of the many soil features available for modeling, we restrict our attention
to three: Water, Nitrogen and Phosphorus. They were chosen for their
adequacy as representatives of the environmental factors that influence root
growth (Section 2.2).

A soil patch represents some volume of soil. Its state is represented by
a set of continuous variables that characterize the total amounts of Water,
Nitrogen and Phosphorus available in that soil volume.

3.1.3 Generator of random soil configurations

Plants capable of thriving in a wider variety of conditions have a selective ad-
vantage over competitors for the same ecological niches that do not display
the same level of robustness. A plant with a greater phenotypic plastic-
ity will have a greater number of environments at its disposal, and will be
more successful in poor soils that prevent plants following more rigid growth
behaviours from prospering. A successful model of root growth should there-
fore be capable of exposing roots to a great variety of conditions [Rajaniemi
and Reynolds, 2004].

A procedure was developed for randomly defining soil patches’ initial
states, with values that are plausible from a biological perspective. This
procedure follows the design principles of having no strong discontinuities
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‘Soil/Water/Peak/coords’ : [(19, 16), (23,
4), (7, 32), (2, 10), (19, 25), (25, 14),
(30, 14), (21, 27), (4, 5), (30, 0), (29,
6), (14, 17), (24, 22), (6, 4), (5, 32), (3,
22)]

‘Soil/Water/Peak/height’ : [0.50, 0.26,
0.27, 0.11, 0.89, 0.65, 0.59, 0.74, 0.29,
0.25, 0.54, 0.44, 0.58, 0.52, 0.70, 0.59]

‘Soil/Water/Peak/decay rate’ : [0.24,
0.35, 0.41, 0.29, 0.21, 0.53, 0.42, 0.64,
0.28, 0.48, 0.25, 0.24, 0.22, 0.31, 0.32,
0.49]

Figure 3.3: A randomly initialized soil configuration, and the listing of all the
numerical values needed to fully define it. 16 peaks can be seen, randomly
scattered in a soil of 33 by 33 soil patches, having heights randomly chosen
in the ‘Water’ variable’s range, [0, 1], and decay rates uniformly chosen in
the range [0.20, 0.65].

in the values of contiguous soil patches, and of having multiple areas of
strong or weak concentrations present throughout the soil (Figure 3.2). An
added advantage it provides lies in its capacity to generate, through pa-
rameterization, soil configurations that pose challenges of variable degrees
of complexity to the root. When running a root growth simulation, this
procedure is used to set the initial states of all soil patches, in all variables
(Water, Nitrogen and Phosphorus).

The soil’s initial configuration in each of its variables is considered to
be analogous to a mountain range, with the height at any given location
being indicative of the variable’s local concentration. The soil is initialized
by randomly defining a set of peaks, specifically in terms of where they are
located in the soil, their height and their steepness (Figure 3.3).

The individual contribution each peak gives to a soil patch’s initial value,
its height, is given by the exponential decay function

h(d) = h0e
−λd.

Here h(d) is the height of a soil patch at a distance d from the peak, λ is the
peak’s decay constant, and h0 = h(0) is the initial height, i.e. the height at
distance d = 0. A soil patch’s initial state, in each of its variables, is given
by

∑
h(d) for all the variable’s peaks. Each state variable can only vary in

a given range, so the result of the sum must be bound to it. Note how the
total height at a soil patch containing one of the peaks will most likely be
higher than the peak’s height, as all other peaks potentially contribute also
to increasing the soil patch’s height.

The distance d between two soil patches in the hexagonal lattice is mea-
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Water Nitrogen Phosphorus

Figure 3.4: Standard visualization of a soil configuration at a given instant.
One soil of 33 by 33 soil patches is shown. Each soil state variable ranges in
[0, 1], and is randomly initialized through the definition of 32 peaks. Darker
areas indicate higher concentrations.

sured as specified in [Luczak and Rosenfeld, 1976, measure d6] (see [Mehn-
ert and Jackway, 1999, Figure 2b] for a comparison with different distance
measures). This distance measure produces the number of hexagons in the
shortest path between two hexagons. It is equivalent to the Manhattan and
Chessboard (Chebyshev) distances on square lattices.

3.1.4 Standard Soil visualization

Figure 3.4 illustrates what from hereon in the report will be the standard
visualization of a soil configuration at a given instant. As previously men-
tioned, each soil patch’s state is defined by the amounts of Water, Nitrogen
and Phosphorus it contains. Figure 3.4 shows three panels, one per soil state
variable. Each soil patch is therefore shown three times.

The soil configuration depicted in Figure 3.4 shows a scenario where the
soil is very dry close to the surface (top of the image). The place where a
root would be able to extract most Water from, the left side of the deepest
soil layers, has however very poor concentrations of Nitrogen and Phospho-
rus. In a similar way, the top left section of the soil has a high concentration
of Nitrogen, but poor concentrations of Water and Phosphorus. As roots
need to secure access to all of them, they would have to develop in a way
that would ideally grow segments into these diverse patches of greater con-
centrations, while dealing with their local deprivations on the remaining
materials.

Note that this visualization treats the soil as a regular matrix, of square
shaped patches. The horizontal displacement on odd numbered rows of soil
patches mentioned in 3.1.1 is therefore not taken into account when the
image is generated. The visualization is not therefore a perfect depiction of
the soil’s actual structure. Contrast Figure 3.4 with Figures 5.2–5.5, where
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soil patches’ hexagonal structure is accurately replicated.

3.2 The Root

Figure 3.5: Example of a
Herbaceous plant

Our interest in modeling root growth arises
primarily from our interest in replicating
roots’ robust soil exploration and exploita-
tion behaviours. We therefore modeled bio-
logical processes at a minimal level of realism
required for such behaviours to be replicable.
Root functions such as that of providing an-
chorage to the plant could then be ignored,
but others such as internal transport of ex-
tracted materials, and energetic costs to root
operations could not [Fitter, 2002].

Our modeling of root growth considered as
a prototypical root that of a herbaceous plant
(see Figure 3.5). Such roots grow segments
that are very homogeneous in their composi-
tion and function, undergoing few transforma-
tions of major significance over time. Addi-
tionally, such roots display a significant degree
of phenotypic plasticity in their foraging for
resources. These attributes are of relevance
for the technological transfer of the root growth behaviour considered later
on.

The present section describes the root architecture’s representation. The
following sections will then describe the model’s dynamics. Besides of the
considerations drawn in this section, arising from the model root, other
sections draw implications in terms of sizing of soil patches (Section 3.1.1)
and consequent parameterization of the dynamics (Section 3.3.3) and their
timings (Section 3.3.1).

3.2.1 Structure

A model of root growth must necessarily represent the root system through
a mutable data structure that is extensible, so as to encompass newly grown
segments. In the case of our model plant, the different segments throughout
the root are very similar between themselves in terms of shape and function.
This regularity is observable not only in space, but also in time: as the
root grows, the root segments already in place do not undergo any major
transformations (an example of such transformations would be the gradual
thickening of a main root stem for providing anchorage to the growing plant).
An abstract model of such a root can therefore rely on a composition of
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homogeneous elements, that undergoes transformation simply through the
gradual addition of new elements at its extremities.

The complete root is discretized into uniformly sized units designated
as root segments. Each root segment is embedded in a single soil patch,
from which it extracts water and nutrients (note though that multiple root
segments may be present in the same soil patch). A notion of neighbourhood
between root segments is introduced: two root segments are said to be
neighbours if they are contiguous in the root structure, and therefore occupy
contiguous soil patches.

The complete root is represented as a graph, having root segments as
its nodes, and neighbourhood between root segments represented by edges
(and not the other way around, as one might also consider). Specifically, the
root is represented as a connected acyclic graph, where nodes have a degree
between 1 and 3 (one parent and 0,1, or two children). In other words, the
root is represented as a binary tree [Cormen et al., 2009]. Other than the
binary tree’s root node, each root segment has a neighbour, designated as
its parent, which is the root segment from which it grew. Each root segment
has in addition from 0 to 2 children nodes, corresponding to root segments
that grew from it. The degree of branching by an apex was limited to 2 so
as to limit the complexity of apex controllers (Section 4.1).

The binary tree’s root node is designated as the shoot segment, and is
the only entity in our model that exists above the surface level. In our
model, the root is the only explicitly modeled part of the plant. The single
shoot segment therefore lies at the interface between the modeled and non-
modeled parts of the plant. It is at this entity that interactions between
the root and shoot should be taken into account in the model. The shoot
segment has a degree of 1, as it has no parent node, and is connected to a
single root segment.

Root extremities are represented as root segments having no children
nodes (the so called leaves of the binary tree). These are the root’s apices.
When an apex grows, it adds to the binary tree either one (elongation event)
or two (branching event) new segments, which become embedded into soil
patches adjacent to that of the apex. The old root segment ceases to be an
apex, and that designation then falls into the newly created root segment(s).

Root growth occurs in our model only at the apices. The model does
not therefore support cases where a mid-section of a segment originates a
new apex. This is motivated by properties of our technological application
(see Chapter 5), and by considerations of computational efficiency, as apices
are then the only autonomous units that need to perceive and act on their
environment. Being apices the only root segments involved in root growth,
the remaining root segments become mere spectators in the root growth
process, and then carry out a single function: that of contributing to the
transport of extracted materials through the root system.

In Appendix A we discuss implementation details on the representation
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and efficient processing of segments in a root structure.

3.2.2 State variables

Each root segment contains inside itself variable amounts of the same three
continuous variables that are also present in soil patches’ state: Water,
Nitrogen and Phosphorus. These values change over time by extraction
from the soil, and through internal diffusion in the root system.

3.2.3 The Seed

The root’s initial configuration is defined as a binary tree containing only
two contiguous segments. As explained before, the binary tree’s root node is
the shoot segment. Connected to it is a single root segment. Having no other
root segments following from it, this single root segment is thus considered
to be a root apex.

A simulation starts with the single apex in the plant’s seed placed in the
soil patch at the centre of the first row of soil patches (the surface layer),
with the shoot segment protruding from it above the surface.

The amounts of Water, Nitrogen and Phosphorus inside the two seed
segments at the beginning of the simulation are system parameters.

3.3 State Updating

The dynamics implemented in our model are succinctly described as pro-
cesses of diffusion from sources to sinks. Much of the dynamics in real soils
and roots consist in flows from entities where there is a surplus of some ma-
terial, into neighbouring entities where there’s a deficit of it. Undisturbed,
diffusion might then over time lead to an equalization in the amounts of the
material present in these entities. Disturbances are introduced into this nat-
ural flow by the autonomous activity of apices, which cause the appearance
of new entities to and from which materials will flow.

In our implementation, a generic diffusion process (Section 3.3.2) is sub-
jected to distinct parameterizations, which configure it to perform the differ-
ent diffusions from/to soil patches and root segments (Section 3.3.3). As in
other parts of the model, biological realism is here traded-off for simplicity
and transferability into the robotics application.

Section 3.3.1 describes how the notion of time is handled in the simu-
lation. Following the description of how diffusion implements the system’s
dynamics, Section 3.3.4 then describes how boundary conditions are taken
into account in the model.
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3.3.1 Updating Schemes

Time is discrete in our simulation. At every time step, all modeled entities
(soil patches and root segments) update their state synchronously. In our
implementation each simulated entity has its own individual representations
of state at the current and following time steps. The multiple update func-
tions (diffusion processes) are executed by each entity to set state variables’
values at the next time step. Once all modeled entities have been updated,
state variables are swapped, so that the following time step becomes the cur-
rent time step. The plausibility of synchronous update schemes for modeling
biological processes is supported, for instance, by [Gershenson, 2004], but
it is known that asynchronous update schemes provide several advantages
[Grilo and Correia, 2011]. Though synchronous updating is implemented
at this stage, support for alternate updating schemes can in the future be
easily incorporated into the model.

A transition in the model from one time step to the next is made to cor-
respond to an interval of time in the real-world. This correspondence will
determine the rates and frequencies at which distinct processes take place
in the simulation. The model’s discrete nature means it will present snap-
shots of how the biological system would look like at specific points in time,
with consecutive time steps representing the initial and final states of the
transformations that in the real-world would have undergone continuously
in a time interval of that magnitude.

Root growth is a process that occurs much more slowly than the diffusion
of materials throughout the soil and root. This leads to the requirement
of having different update rules being applied in the model with distinct
frequencies.

As mentioned in Section 3.1.1, soil patches’ real-world dimensions should
be such that an apex of the modeled plant, from its location inside a soil
patch should be able to perceive the overall conditions in all the neighbouring
soil patches. As in our model all root segments are uniform in size, when
an apex grows, it grows by the length necessary to place the new segment
in a soil patch adjacent to that of the apex. The amount of real-world time
required for this process to complete is then the amount of time it takes for
an apex of the model plant to grow by such a length.

Diffusion, which takes place at every time step in the simulation, occurs
on soil patches and root segments having real-world dimensions constrained
by the considerations mentioned above. Those dimensions have a bearing on
the rate at which materials diffuse, but also on the number of time steps that
should take place in the simulation in between those time steps on which
apices take growth decisions. A diffusion process involving two contiguous
root segments affects their mutual states. After n time steps, the materials
exchanged in a diffusion event might potentially reach another root segment
n segments away from those involved in that initial diffusion. Given we
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know the time span between apex updates, we can determine how far a
signal might travel in a root of the model plant during that time. Dividing
that distance by root segments’ length, we then determine how many time
steps to simulate in between apex updates.

3.3.2 The Diffusion process

The diffusion process controls the flow of materials over time between entities
in the simulation. It is responsible for the entirety of the model’s dynamics,
with the sole notable exception of apices’ growth behaviours, which are
discussed in Chapter 4.

Diffusion is here implemented at a high level of abstraction, that raises
the process’ scope beyond the implementation of soil and root dynamics.
On seeking such generality, many important details were necessarily lost,
related to the corresponding processes going on in the physical world, and
many decisions on implementation details had to be taken. The implemented
algorithm is thus resulting from a delicate trade-off between the model’s
fidelity to a real diffusion process and the possibility of a simple transition
to the robotics application. The diffusion process’ full algorithmic definition
is presented in Appendix B. In it, we spend some extra time thoroughly
describing our exact choices, so as to specify all that is needed to successfully
reproduce our results.

We next introduce the modeling requirements which guided the diffusion
process’ design, and follow with an exemplification of the dynamics that
result from the defined process.

Design principles

Diffusion was defined so as to include support for a number of features that
were considered necessary to be present in the model. These were:

• Diffusion should be a fully decentralized and localized process between
the involved entities. No master resource-allocator allowed;

• From the model’s perspective, all flows should be taking place concur-
rently. A degree of independence between different diffusions should
therefore be achieved, so their execution order would not affect the
outcome;

• The simulation is not a closed system. Diffusion should therefore be
able to provide an interface with those parts of the world which are
not explicitly modeled (the plant above surface level, the surrounding
soil, . . . ), so flows in and out of the system might be supported;
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Figure 3.6: Time evolution of 20 simulated entities’ state variables being
subjected to diffusion, starting from randomly defined initial amounts. En-
tities structured according to a ring topology, where each diffuses into its two
immediately adjacent neighbours. Diffusion parameterized with dk = 0.0,
domax = rimax = 0.25, rc = 1.0.
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Figure 3.7: Replication of the time evolutions shown in Figure 3.6, but
having at each time step entities receiving from outside an amount generated
at random in the range [0.0, 0.05].

• Diffusion should support the simultaneous consideration of an unde-
termined number of entities, potentially having distinct characteristics
with an influence on how diffusion takes place.

Examples

Figures 3.6 and 3.7 illustrate the dynamics resulting from the implemented
diffusion process. They show the time evolution of a 1-dimensional arrange-
ment of entities, which diffuse at every time step into their immediately
adjacent neighbours to either side. Entities at the edges interact with the
last one on the other side, thus structuring this universe as a ring.
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Figure 3.6 illustrates the diffusion process’ conservation of the amount
of materials in a closed system, as well as the speed of convergence at all
entities towards the average amount contained in the system. Figure 3.7
enriches the illustration with a depiction of how external perturbations are
quickly spread out. In both cases, we can see how diffusion endows local
states with information on a collective system property.

These plots can also be interpreted as providing an illustration of the
flow of materials occurring inside a portion of a root, 20 segments long and
having no branches. The diffusion process uses here the same parameter
settings that are used in the simulation to configure the internal root dif-
fusion (Section 3.4). Note however that the rise in amounts seen in Figure
3.7 is in the simulation countered by the ongoing growth of new segments
(new containers to diffuse from/into) and interactions with the shoot (flows
of materials involving entities outside the system). Also, apices pay for the
energetic costs of growing new segments with a consumption of internal
materials.

3.3.3 Update Rules

Sections 3.1 and 3.2 described the soil and root’s structure, state variables
and initialization. The present section describes the update rules responsi-
ble for the system’s dynamics. Transformations of two types occur in the
system: apex activity resulting in the growth of new root segments, and
diffusion processes transforming soil patches and root segments’ state vari-
ables.

As discussed at length in Section 3.3.1, root growth and diffusion occur
over different timescales. This is implemented in the simulation by having
diffusion occurring at every time step, but apices updating only once per a
parameterizable number of time steps. These two processes influence each
other: diffusion actively shapes apices’ perceptions of their contexts, and
constrains their activities (by influencing the availability of materials with
which to pay for the energetic costs involved in growth), but in turn takes
place over a set of containers that is undergoing transformation by growth
at the apices.

We follow with the presentation of the three implemented update rules,
by the order in which they are potentially carried out at every time step
in the simulation. The diffusion steps are here presented independently of
the state variable they are being applied to. When the time comes in the
simulation to execute either the (b) or (c) diffusion process, it is applied
separately in turn to each of the three state variables: Water, Nitrogen and
Phosphorus.
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(a) update Apices

Chapter 4 is exclusively concerned with the optimization of apex behaviours,
that efficiently map environmental perception (Section 4.1) to the appropri-
ate growth decisions. We here focus instead on how apex updating integrates
with the rest of the model.

For a root segment to grow, the root must pay the energetic costs of cell
division, and for the penetration of the soil patch into which the segment
elongates. This cost is specified through a system parameter indicating the
amounts of the apex’s state variables that are consumed in that process.

A segment’s growth costs are constant. The scenario of variable energetic
costs dependent on local soil properties was not considered in the model. A
growth decision on the part of the apex is then either fully achievable by
paying that constant cost, or not carried out at all.

As mentioned in Section 3.2.1, all segments throughout the root are
uniform in size (at all times, even as they grow). A situation where the
available materials to pay for a growth event are only sufficient for the
creation of a smaller segment, is therefore not supported. Should an apex
controller choose an action it has no capacity to fully pay for, the simulator
cancels that choice.

The parameterized energetic cost must be payed for each individual seg-
ment growing out of an apex. An apex that decides to elongate in one
direction, while also originating another branch in some other direction,
pays that cost twice. The elongation segment takes priority over the branch
segment in accessing internal resources to pay for the cost. Should there be
resources to pay for only one of the segments, it is the branch the one to be
canceled.

Note that as apices grow, they may end up producing multiple root
segments per soil patch. Only resource availability limits the number of
segments the root is able to place in an area of the soil. Rich soil areas are
able to support more segments, but also in poor soil areas we might have
diffusions from elsewhere in the root providing for the elongation costs which
allow for multiple segments to traverse those poor areas, so as to reach richer
patches beyond them.

An apex update involves the stages of context perception, action selec-
tion, and action execution. During update, apices may choose either to
take no action or to grow a number of segments. Segments grow by the
length necessary to take them into an adjacent soil patch, over the number
of time steps matching the amount of real-world time required for an apex
of the model plant to grow by such a length (Section 3.3.1). In nature,
the root would grow incrementally over that span of time, gradually paying
for the process’ energetic costs, and all the while participating in diffusion
processes with the soil and the root segment from which it grows. In our dis-
crete model, where soil patches are always of uniform size, segment growth
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is implemented through the following sequence of steps:

1. The growth’s energetic costs are payed for all at once by immediately
deducting from the apex’s state variables relative to the current time
step the amount necessary to cover the complete costs;

2. A new segment is immediately added into the simulation, embedded
into the chosen soil patch adjacent to the one where the apex it grew
from is, and connected to it. Each of this new segment’s state variables
is initialized with state 0.0 (segment initially contains no amount of
that specific material);

3. Over the time steps in between apex updates, the initially empty seg-
ment participates in diffusion processes with its soil patch and the
segment it grew from. Note that the segment participates in diffusion
also in the iteration in which it is added to the simulation, given apex
updating takes place prior to the diffusion processes.

When the time comes to update apices once again, the new segment is
now fully in place, and containing inside itself the outcome of diffusions over
the span of time during which growth took place.

(b) root→root diffusion

The flow of materials occurring internally in the root system is implemented
by a diffusion process between neighbouring root segments. At every time
step, each root segment assumes once per state variable the role of donor
in a diffusion process, having as recipients the segment it grew from, plus
the up to two segments that grew from it (potentially in this very same
time step). For each state variable, given all segments assume once the role
of donor, all segments are therefore equally recipients in up to three other
diffusion processes.

Extracted materials will this way, given enough time, find their way to
the plant’s shoot (see Section 3.3.4 for details on the modeling of root–shoot
interaction). However, as diffusion takes materials wherever there is a deficit
of them, internal root diffusion may also supply lower branches of the root,
which are not by themselves able to guarantee access to a specific material
at the same levels as other branches. Besides of supplying apices with the
required materials with which to pay for growth’s energetic costs, these
downwards diffusions contribute also to the direct communication between
apices, by making information on global system properties more readily
available at a local level. Sections 3.5.1 and 3.5.2 elaborate further on the
communication of information between apices.
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(c) soil→root diffusion

Soil extraction on the part of the root is modeled as a donation by soil
patches into the root segments embedded in them. Root segments extract
from the soil by creating inside themselves deficiencies in amounts of mate-
rials, which are filled up through diffusion from the soil.

At every time step, each soil patch containing at least one root segment
assumes once per state variable the role of donor in a diffusion process,
having as recipients the undetermined number of root segments that over
time grew into it. Through diffusion, each soil patch will distribute at every
time step small amounts of the considered material through the many root
segments, in proportion to their relative deficits in that material.

3.3.4 Boundary conditions

Cellular automata universes are traditionally one- or two-dimensional struc-
tures, where regularity in neighbourhoods is imposed by arranging cells in
a ring or toroidal configuration, respectively. No exceptions then need to be
made in the rules for handling different types of neighbourhoods throughout
the universe.

In our model one might consider the simulated soil to represent the
portion of soil in contact with a round vase. Soil patches to one side could
then have patches on the other as neighbours (the initialization of random
soil configurations would then need to be adjusted, as the distance measure
would need to accommodate the possibility of shorter paths between patches
through the sides of the simulation). This would not save the model however,
from the need to handle the neighourhood exceptions at the soil’s surface
and bottom layers. Having soil patches in one having patches in the other
as neighbours would make no sense.

The edges of the simulated soil are given above as an example, but
neighbourhood regularity is equally broken in other parts of the model.
Fully listed, these are:

• the modeled shoot segment has no other segment preceding from it;

• root segments have from 0 to 2 other segments grown from it;

• apices perceive 7 soil patches in their vicinity, some of which may lie
beyond the soil’s edges;

• apex controllers may choose to grow in a direction that would cause
the new segment to be placed in a soil patch beyond the soil’s edges;

• soil patches diffuse into an undetermined number of root segments.

The handling of these irregularly-shaped neighbourhoods is therefore an
important model requirement.
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The diffusion process presented in Section 3.3.2 was defined having also
these situations in mind. It accepts an undetermined number of recipients,
and furthermore, both the donor and the recipients might represent entities
which are not fully included in the simulation. In those cases, the value as-
sumed to be present in that missing entity can then be specified through the
psm variable. This value might be made available through a parameterized
constant, or dynamically calculated as a function of some system state.

Given no diffusion into soil patches was implemented at this stage, all
diffusions in our model are occurring into root segments. The only diffusion
from/into a missing entity that the model then needs to consider occurs at
the interface with the shoot. The handling of this case is discussed below.

Section 4.1 discusses the handling of apices’ perception of states in soil
patches beyond the soil’s edges, which occurs whenever an apex embedded
in one of the soil patches at the soil’s edges needs to perceive its context.

Should an apex controller choose to grow into a non-simulated soil patch,
the model enforces a cancelation of such choice, and that growth action will
then not take place. This type of model supervision of apices’ activities was
already previously presented, for the validation of whether the energetic
costs involved in growth events can be payed for given locally available
resources.

Root–shoot interaction

Modeling a root in isolation from the rest of the plant above the surface
necessarily leads to an oversimplification of the processes occurring in nature.
In real plants, both halves work together so as to achieve a mutual balance in
resource acquisition and usage. In nature, water and nutrients extracted by
the root flow upwards towards the shoot. These provide materials necessary
for the plant’s development. Photosynthetic products, among which Carbon,
flow in the opposite direction, and provide in turn vital resources for the
root’s growth.

The shoot, by constituting a bottleneck through which materials going
in either direction must pass, assumes from the perspective of both parts
of the plant, the role of a central source of signals/information, having an
influence on their behaviour. Resource acquisition on the part of the root
serves the function of nourishing the plant. Its degree of activity is therefore
controlled by the plant’s overall needs. The aerial part of the plant consumes
a higher amount of materials (thus acting as a stronger sink in the diffusion
process) in periods in which it is undergoing more accentuated growth.

We model root growth to the degree of realism necessary to achieve an
efficient technological transfer of its behaviours. Explicitly modeling pro-
cesses occurring above the surface would have significantly increased the
model’s complexity, and would have provided us essentially with the capa-
bility to externally control an apex swarm’s degree of activity, by external
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adjustments the degree to which their products are extracted from their own
communication network (the root’s structure).

Because we are interested in the design of collective foraging behaviours,
and not necessarily at this point in global activity level coordination based
on the operations of an information centralization entity, we could then
ignore the explicit modeling of processes occurring above the surface. The
appropriate way to configure diffusion at the root–shoot interface, given then
behaviour we aim for, is then to assume a phase of maximum growth in the
plant, that requires as many resources as the root can supply. The greater
the pull from the shoot, the more the root is forced to extract from the
soil to compensate, leading the root to actively forage in search of sources
capable of providing for all the shoot’s needs.

At the single simulated shoot segment, diffusion into its preceding seg-
ment is diffusion into an entity that is not explicitly simulated. So as to
achieve the dynamics mentioned above, the diffusion process is configured
to assume that missing has psm = 0.0, in all state variables, and in all time
steps. This way, we simulate a shoot in permanent maximum need of mate-
rials, leading the root to pump upwards as much as it can. Furthermore, in
another departure from biological realism, we are not constraining apex ac-
tivity on the availability of photosynthetic products flowing from the shoot,
such as Carbon, thus allowing for a greater degree of apex activity.

3.4 Default parameter values

In this section we list, for completeness, the numerical values we assigned
in all our simulations to the various parameters that define the simulator of
soil and root dynamics described in this chapter.

‘Root/ranges’ : (1.0, 1.0, 1.0)

Maximum amounts of [Water, Nitrogen, Phosphorus] a root segment in ca-
pable of holding.

‘Root/Seed amounts’ : (1.0, 1.0, 1.0)

Amounts of [Water, Nitrogen, Phosphorus] inside the single root and shoot
segments when a simulations starts.

‘Root/max diffused per it’ : (0.25, 0.25, 0.25)

Maximum amounts of [Water, Nitrogen, Phosphorus] a root segment is able
to diffuse out of itself and into its adjacent root segments per iteration.

‘Root/max extracted per it’ : (0.05, 0.05, 0.05)
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Maximum amounts of [Water, Nitrogen, Phosphorus] a root segment is able
to extract from the soil per iteration.

‘apex/consumed by growth’ : (0.10, 0.10, 0.10)

Amounts of [Water, Nitrogen, Phosphorus] the apex must deduct from its
own variables in order to grow one segment into an adjacent soil patch.

‘apex/update frequency’ : 10

Diffusion takes place at every time step, but apices will only be allowed
to take action once at the beginning of every sequence of 10 time steps.
They then act in time steps (0, 10, 20, . . .), with the outcome of their action
appearing in the simulation at the following time step.

‘apex/update cycles’ : 20

This is the simulation stopping criteria. Once the apices have have been
updated this number of times, the simulation stops (total number of diffusion
iterations will then be = ‘apex/update frequency’ * ‘apex/update cycles’ =
10 * 20 = 200 iterations).

‘Soil/dimensions’ : (33, 33)

Number of hexagonal soil patches per dimension in the simulated soil.

‘Soil/Water/Range’ : [0.0, 1.0]

‘Soil/Nitrogen/Range’ : [0.0, 1.0]

‘Soil/Phosphorus/Range’ : [0.0, 1.0]

Upper and lower bounds for soil variables representing Water, Nitrogen and
Phosphorus.

‘Soil/Water/nrPeaks’ : 32

‘Soil/Nitrogen/nrPeaks’ : 32

‘Soil/Phosphorus/nrPeaks’ : 32

Number of peaks in randomly generated initial soil configurations.

‘Soil/Peak/decay rate/range’ : [0.20, 0.65]

Range in which peaks’ decay rates will be randomly defined, when generating
initial soil configurations.

Using the notation introduced in Appendix B, for Diffusion’s algorith-
mic definition, the parameter values listed above lead the different diffusion
processes to assume the following configurations:

soil→root: dk = 0.0, domax = 1.0, rc = 1.0, rimax = 0.05

root→root: dk = 0.0, rc = 1.0, domax = rimax = 0.25
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3.5 Discussion

3.5.1 Direct communication between apices

A significant degree of coordination is required for apices to be able to
construct through their individual actions a structure that benefits the plant
as a whole. Apices must achieve that goal while subjected to a significant
degree of uncertainty about the environment they are growing on. The
exact locations of the best patches for exloitation is not known to them
beforehand. Apices’ collective blindness is counterbalanced by the internal
root→root diffusion. The segments grown as the root develops provide a
communication channel through which materials diffuse, carrying with them
informational clues apices can make use of to coordinate and decide on the
appropriate course of action. As seen in Figures 3.6 and 3.7, the diffusion
process allows for a distributed approximation to global states. The speed
at which this information flows is further discussed in Section 3.3.1.

The materials extracted by root segments do not necessarily flow unidi-
rectionally towards the shoot, forever disappearing from their grasp. The
rate at which different materials diffuse out of a root segment already pro-
vide a local clue on the rest of the root’s performance, as a local difficulty
in draining materials indicates elsewhere other segments are also managing
to adequately fulfill the same goal. But as diffusion produces flows in the
direction of greater to lower concentration, downwards flows might equally
occur, and these have the capacity to supply segments with materials they
lack the capacity to extract by themselves.

Being root segments continuously subjected to diffusion with neighbour-
ing segments, the concentrations they find within themselves at any given
point in time provide them with a degree of information on collective system
processes. Furthermore, these internal concentrations become more strongly
imbued with informational value, as they are considered together with the
concentrations in the same materials that the apex observes in its vicinity.
The importance of investing in local extraction of a given material can be
inferred from these relative amounts. An apex that does not observe inter-
nally sufficient quantities of something that is abundantly available around
itself, is informed of the need to invest in local exploitation of available re-
sources (its internal deficiency will arise in this context from fast diffusion
out into the root). Conversely, internal abundance in the context of local
depletion informs it that it is the culprit of resource retention by the root,
as it is forcing others to supply it with what it cannot provide by itself.

The appropriate course of action is to a significant degree determined
also by how amounts compare across the multiple state variables diffusing
in and out of an apex. An apex finding itself in that last scenario, might
still find it important to invest in local exploitation: it would be informed
it could not by itself fulfill one of the root’s needs, but others could do it
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for itself, while the internal diminute amount in a different state variable
by comparison with its local abundance would tell the apex that in another
goal, it is able to provide for something the rest of the root is having trouble
fulfilling. Were not this the case, were the apex to find itself in an area
locally depleted of all its state variables, its appropriate course of action
would then be influenced by whether internally it was supplied by others in
quantities sufficient to pay for growth’s energetic costs, and whether it could
sense in its vicinity a gradient in concentrations meriting the gambling of
those resources on growth events with the expectation to reach that way
parts of the soil with greater availability of resources.

The previous rationalizations of decision-making at the apices does not
necessarily explain the processes through which in nature they take their
growth decisions, as these are to a great extent not completely understood.
It does illustrate however, that apices might be able to coordinate collec-
tively, not through the communication of fully descriptive characterizations
of their contexts (something often done in robotics), but through minimal
communications of signals with sufficient informational value to properly
bias behaviour in a competitive environment. Though in nature these signals
include also the broadcasting of signalling molecules with explicit semantics
aimed at influencing elsewhere behaviour in precise ways (as discussed in
Chapter 2), in our model we limit the perception of distant states to that
enabled by the transformations diffusion effects on local internal concen-
trations. We this way abdicate on the capacity to directly and explicitly
order others on their course of action, and put instead the emphasis on the
personal identification of the actions which maximize collective performance.

3.5.2 Stigmergy through extraction: the soil as an external
memory

Stigmergy is an organizing principle in which individual parts of the sys-
tem communicate with one another indirectly by modifying and sensing
their local environment. In our model, this occurs through the extraction
of materials from the soil, that is conducted by root segments (soil→root
diffusion). In addition to the direct communication channel made available
to apices by diffusion occurring internally in the root, apices can therefore
also make use of the information provided by the transformations other root
segments have affected in their common environment, the soil.

An example of stigmergic communication that is frequently given, is that
of the laying down of pheromones by ants as they explore their environment.
A few parallels can be drawn here between root growth and ants’ foraging
for food. Pheromone paths can be seen as equivalents to the root structure,
and ants the diffusion process conducting the transportation of materials.
A difference can already be seen in that all segments throughout the root
cooperate in extracting from the soil, while ants “extract” at path’s extrem-
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ities. A stronger distinction between both systems is to be found though in
that once the root structure is laid down, it is static. Ants, however, are
free to transform their paths over time, in answer to changing availabilities
of food throughout their environment. The cost for an apex that takes a
wrong growth decision (and for the root as a whole) is thus much higher,
especially when we take into account that growth actions always build upon
the outcomes of previous actions. We might therefore conjecture that using
roots as a source of inspiration will lead to better collective decision-making
under uncertainty, while ants will be more suited to decision-making in dy-
namically changing environments.

In both cases, the environment is used as an external memory of the
previous actions undertaken by the system. Apices are capable of taking
different actions in the same patches of soil, depending on their degree of
exploitation by segments previously grown in those same patches. While
increasing concentrations of pheromones along a path provides a positive
reinforcement, leading ants to allocate higher degrees of activity along those
paths, extraction of materials from a patch leads other apices to allocate
fewer resources in the exploitation of those same patches.

Finally, very strong discontinuities in materials’ concentrations are not
inserted in the soil by the initialization process described in Section 3.1.3.
If an apex perceives around itself patches possessing concentrations signifi-
cantly distinct from those in the remaining patches it perceives, it can infer
the locations where other root segments have potentially already been de-
ployed, allowing it to guide its growth into soil patches that may over time
allow the root as a whole access to greater amounts of materials.
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Chapter 4

Evolutionary Design of Apex
Behaviours

Having in the previous chapter introduced the modeling of soil and root dy-
namics, we now turn to the automatic design of apex behaviours that maxi-
mize the root’s performance at a collective level. The behaviours considered
here are reactive: apices sense their conditions at discrete time steps, and
immediately take the appropriate action for those conditions. The challenge
is then to come up with mappings from local perception to actions, such
that through repeated, parallel application of those mappings, a collective
performance measure is optimized.

The sub-sections below introduce first the information that is made avail-
able to each apex at each time step and the actions it can perform (Section
4.1), and follow with the description of the controller’s architecture (Section
4.2), and the optimization algorithm used to optimize it (Section 4.3). In
Section 4.4 we describe the setup used to optimize apex controllers, and in
Section 4.5 we discuss the obtained results.

4.1 Apices perception vector, and set of possible
actions

Whenever apices are allowed to act, they perceive a vector of continuous
values characterizing the soil conditions in their vicinity, as well as the con-
ditions internal to the apex. This perception vector contains the following
sequence of values:

Internal states: amounts of Water, Nitrogen and Phosphorus inside the
apex root segment;

Local states: amounts of Water, Nitrogen and Phosphorus contained in
the soil patch in which the apex is embedded;
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Neighbouring states: amounts of Water, Nitrogen and Phosphorus con-
tained in the six soil patches around the one in which the apex is
embedded, read in clockwise direction, starting at north-east.

A total of 3 + 3 + 6 ∗ 3 = 24 state variables are thus taken into account by
the apex in order to judge on the appropriate course of action.

Perception of state values is not affected by noise. The apex is then able
to perfectly measure state variables. Other than in the random initialization
of soil conditions, a root growth simulation is then fully deterministic.

Upon processing its context, the apex controller takes one of three avail-
able decisions:

Stay Still: the apex takes no action in the current time step;

Elongate: the apex will elongate. A direction for growth must then be
equally specified. Considering the apex has internally enough mate-
rials with which to pay for the growth’s energetic costs, by the next
time step a new root segment will have been added to the simulation,
embedded in a soil patch contiguous to the one from which it grew.
As defined in Section 3.2.1, any root segment being a leaf of the bi-
nary tree is considered to be an apex. As an apex grows, therefore,
the segment previously considered to be an apex loses that designa-
tion (as it now has a segment growing from it), and the newly created
segment, having no segments growing from it, is considered to be an
apex. Next time apices are allowed to act, that is the segment that
will then perceive and act on its environment;

Elongate and Branch: Similar to the previous action, but growing two
instead of only one new segment out of the apex that takes the decision.
The apex controller must then supply two growth directions: that of
the ‘elongation’ segment, and that of the new ‘branch’ segment. The
considerations drawn before for the Elongate decision apply here to
both of the new segments.

Apex behaviour is then a mapping from a set of 24 continuous variables
characterizing the apex’s context, into that of the 3 actions above which is
most suited to be performed in the current context (set of possible actions
is enlarged by the need to specify in addition the growth directions, to a
total of 1 + 6 + 6 ∗ 6 = 43 distinct possible actions).

4.1.1 Boundary conditions

Whenever an apex is contained in a soil patch at the edges of the simulated
soil, it will not have access to information about the states of all its sur-
rounding soil patches. So as to always produce an apex state vector with
the same amount and ordering of variables, the states of all non-simulated
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Figure 4.1: Neural Network Architecture. The feedforward fully connected
structure is shown.

entities (patches beyond the soil’s edges, or above the surface) are assumed
to be 0.0.

4.2 Apex controllers’ encoding

The apex controller we chose to implement is a feedforward artificial neural
network (multi-layer perceptron, MLP). While we did try other encodings,
such as Pittsburgh Learning Classifier Systems [Lanzi, 2008], we obtained
the best results when experimenting with the MLP and we thus here present
those results. In our implementation, the ANN consists of one hidden layer
comprising 10 neurons. In Figure 4.1, we depict the network’s architecture
showing only three of the hidden neurons for the sake of the image clarity;
inputs and outputs are also briefly described.

The input layer consists of 24 neurons which encode the apex sensing.
In particular, 3 neurons (depicted in grey in Figure 4.1) encode the internal
state of the apex and receive as input the variables representing the amounts
of Water (W), Nitrogen (N) and Phosphorus (P) within the apex, 3 neurons
receive as inputs the variable W, N, and P from the cell in the soil where
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the apex currently is. The rest of the neurons receive as input the variables
W, N and P from the 6 neighboring cells. All input neurons are connected
to all hidden layer neurons.

The outputs of the network define the action to be performed at the
next time step by the apex. The first output neuron (neuron A) defines the
action to be performed: either stay still, elongate, or elongate and branch.
This is implemented with a thresholded activation:

• if neuron A’s activation is within [0, 1
3) then the apex performs action

stay still

• if neuron A’s activation is within [13 ,
2
3) then the apex performs action

elongate

• if neuron A’s activation is within [23 , 1] then the apex performs action
elongate and branch

The activation of output neuron E defines the direction of the elonga-
tion, if elongate has been selected by output neuron A as the action to be
performed by the apex. The different possible directions are the 6 neighbor-
ing cells, and thus the network chooses a different direction depending on
the activation of output neuron E and if it is within the following bounds:
[0, 1

6), [16 ,
2
6), [26 ,

3
6), [36 ,

4
6), [46 ,

5
6) or [56 , 1]. Notice that the output of this

neuron is disregarded if output neuron’s A activation is not within [13 ,
2
3).

Finally, the activation of output neuron B defines the direction of the
branching, if elongate and branch has been selected by output neuron A as
the action to be performed by the apex. The different possible directions are
the 6 neighboring cells, and thus the network chooses a different direction
depending on the activation of output neuron EB and if it is within the
following bounds: [0, 1

6), [16 ,
2
6), [26 ,

3
6), [36 ,

4
6), [46 ,

5
6) or [56 , 1]. Notice that the

output of this neuron is disregarded if output neuron’s A activation is not
within [23 , 1).

The implemented ANN uses bias units. There is one bias unit that
connects to all the hidden layer neurons, and another bias unit that connects
to all the output neurons. We then have to optimize in total 283 continuous
variables, which map to the following network connections: (24 variables
perceived in the apex’s context + 1 bias unit) * 10 hidden layer neurons +
(10 hidden layer neurons + 1 bias unit) * 3 output neurons. Both weights
and biases are initialized in [−1.0, 1.0].

4.3 Particle Swarm Optimization

The weights and biases in the Feedforward Neural Networks controlling
apices were optimized using the Particle Swarm Optimization [Poli et al.,
2007; Clerc, 2006; Kennedy et al., 2001] (PSO) algorithm. In PSO we have,
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as its name indicates, a swarm of n particles collectively exploring the search
space. Each particle i ∈ {1, . . . , n} is defined by ~xi, its current position on
the search space, ~pi, the best position visited by the particle so far, and
~vi, its velocity. At each step, the particle updates its velocity vector, and
afterwards updates its position in the search space with ~xi ← ~xi + ~vi.

The core of the PSO algorithm lies in the equation used to update par-
ticles’ velocity. Though several alternatives exist, the canonical algorithm
Poli et al. [2007] uses the equation with “constriction coefficients”:

~vi ← χ(~vi + ~U(0, φ1)⊗ (~pi − ~xi) + ~U(0, φ2)⊗ (~pg − ~xi)) (4.1)

where ~U(0, φi) represents a vector of random numbers uniformly distributed
in [0, φi] which is randomly generated at each step and for each particle, and
⊗ is the component-wise multiplication. ~pg refers to the best position visited
so far by the particle’s neighbors. The constriction factor χ is usually set to
0.7298, along with both φ1 and φ2, also called the acceleration coefficients,
set to 2.05 [Clerc and Kennedy, 2002].

An important concept in PSO is the population topology. Particles are
arranged in a graph, and only interact with their immediate neighbors. Clas-
sical topologies that have been used with PSO are the gbest (“global best”)
and lbest (“local best”) topologies. gbest is basically a fully connected graph,
where all particles influence each other. In gbest, information on best po-
sitions found by each particle is immediately available, and convergence is
faster. In lbest, using a radius of k, particles are arranged in a ring, and par-
ticle i is connected to each particle in {(i+ j) mod n : j = ±1,±2, . . . ,±k}.
Though slower to converge, lbest is less vulnerable than gbest to getting
stuck in local optima [Poli et al., 2007].

4.4 Experimental setup

Particle Swarm Optimization was used to optimize continuous vectors con-
taining 283 variables (as previously explained), which decode into the config-
uration of Artificial Neural Networks for controlling individual apices during
root growth simulations. All variables are randomly initialized with uniform
probability in the range [−1.0, 1.0]. Strict bounds are not enforced on vari-
able’s values, so they may sample values outside that range. PSO used
swarms of 49 particles, structured in an lbest ring topology, where each par-
ticle is influenced by the 4 particles within a radius 2 of itself in the ring.
PSO used the equation with “constriction coefficients” to update particles’
velocities through the search space (constriction factor χ set to 0.7298, and
both acceleration coefficients φ, set to 2.05). Velocity vectors are clamped
after updating to half the range in which variables are initialized: [−0.5, 0.5],
a standard practice in PSO [Clerc, 2006]
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Particles were updated synchronously, in a generational mode where also
objective value evaluation and updating of particle’s memories take place
logically at the same time for all particles. Swarms where optimized over
a span of 250 generations. Every generation, a set of 250 soil configura-
tions was randomly generated, and all particles (along with their memory
positions) were (re)evaluated in this common set (this setup is discussed in
more detail in Section 4.4.1). In total, 10 independent experiments were
conducted with the settings listed above, to train apices’ neural networks.

All individual root growth simulations used the parameter values listed
in Section 3.4.

We tuned the generation of random soil configurations (Section 3.1.3) in
a way that would provide challenging conditions in which to test apex con-
trollers. Soils with very abundant materials are easily exploitable, as about
any growth behaviour will end up falling on top of rich soil patches. Not
enough pressure would have been made on apices to intelligently process
their inputs, and appropriately judge on the best course of action. Hav-
ing an abundance of poor soils, on the other hand, puts great pressure on
apices, as every decision taken in an undernourished context, while diffusion
is quickly pumping the few available materials into the shoot, might mean
the difference between achieving in the end an extensive root structure, or
dying out close to the seed’s location by having invested the few available
materials in growing in the wrong direction.

Also, for a root to be robust enough, apices should be capable of taking
the right decisions no matter the context they find themselves in. For this
to be the case, however, we must guarantee that during optimization apices
become exposed to the greatest possible variety of contexts. As apices are
expected to climb their local gradients into patches richer in materials, in
soils initialized with abundant availabilities of materials, apices would be
able to just jump between patches having high concentrations, not being
adequately exposed to poor soil patches, and therefore not fully learning
how to act on such situations.

4.4.1 Objective function

The primary root function we are interested in is that of efficient exploration
of an unknown soil, in search of the materials essential for the plant’s devel-
opment, and the creation of a materials acquisition network, to extract and
channel those same materials. To assess a given root’s performance, all we
then need to do is measure the amounts of materials it is able to extract in
the time span of a root growth simulation, by comparison with what differ-
ent roots grown in the same soil conditions are able to. The greater these
amounts are, the more successful was the apex controller.

The task assigned to apices is one of collective multi-objective foraging.
Apices should grow in a coordinated manner, so that the plant will have
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access to the greatest possible amounts of all the material being extracted
from the soil (Water, Nitrogen and Phosphorus). The apex controller must
learn to balance the degree to which the multiple goals are achieved, as it is
not acceptable for the root to concentrate on the extraction of one or two
of the materials at the expense of the remaining ones. We therefore define
the measure assessing performance of a root grown through application of
a given apex controller, in one soil, to be the average of the total amounts
of each material that it extracted in the time span of the simulation. Note
that all materials are equally important in this measure. We are not giving
greater weight to Water, nor any other material, when averaging extracted
amounts. Consider Figure 4.7 as an example: the root extracted in that
simulation (58.27, 53.95, 73.56) of Water, Nitrogen and Phosphorus, respec-
tively. The average, 61.93, is taken as the measure of that root’s performance
in that soil.

The same apex controller is applied repeatedly and in parallel by all
apices during root growth. We optimize the decision-making of individual
entities in the system (apices), but evaluate the performance of the system as
a whole (root). This setup is known to facilitate the appearance of altruistic
behaviours, as “selfish” decisions by the apices, which locally increase their
performance but have a detrimental effect over time on the whole root’s
performance, are less likely to be selected for.

Handling of noise in the objective function

The objective value of a certain apex controller depends not only on the
search space position of the particle encoding it, but also on the environ-
ment in which that controller is evaluated. A controller’s objective value is
therefore a random variable which must be approximated during optimiza-
tion, while having in the optimizer mechanisms to handle the noise in those
estimates [Jin and Branke, 2005].

An apex controller’s objective value is estimated by averaging the per-
formance measures of roots grown using that controller, on a multitude of
soil configurations.

To increase the informational value of a controller’s performance esti-
mate, we force all particles in the swarm to always be compared in terms of
their performance on the same set of randomly defined initial soil configu-
rations. So as to avoid overfitting apex controllers to the specific properties
of a given training set, we periodically redefine during optimization the set’s
composition. This procedure has been successfully used in the past for the
optimization of Cellular Automata dynamics [Mitchell et al., 1994; Crutch-
field et al., 2003].

We implement this procedure into PSO by having particles updating syn-
chronously, in a generational mode, rather than asynchronously as is typical
in PSO. At every generation, a new set of soil configurations is randomly
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defined, and particles are evaluated on it.
Because in PSO successive positions in the search space are sampled

as a function of memories of best previously visited search space locations,
particles might be misguided by over- or underestimations of their objective
value. These would result from the set of random soil configurations possess-
ing exceptionally favourable or unfavourable characteristics, not adequately
representative of the whole space of possible soil configurations. To alle-
viate that problem, both particles’ current and previous best positions are
(re)evaluated at the end of every generation, on the same set of randomly
defined soil configurations all other particles are also currently subjected
to. After objective value evaluation, particles check as usual whether their
current position is better than the best one they had previously been to,
overwriting the latter with the former should that be the case. This reeval-
uation mechanism for coping with uncertain objective functions in PSO is
also used for instance by [Carlisle and Dozier, 2002].

Without this constant reevaluation of both current and previous best
positions, we might have Neural Networks persisting in the swarm, not due
to some relative superiority, but because chance had them being evaluated
precisely in that generation where the set of random soil configurations had
characteristics very favorable to exploitation by the behavior they encoded.
For an ANN to remain influential over time, when constantly competing
through reevaluation against other particles in the swarm, it must be a
robust overachiever in most of the soil configurations the optimizer throws
at it.

Figure 4.2 provides an illustration of how apex controllers’ performance
values are estimated. Each of the 200 integer values in the x-axis corresponds
to a distinct initial soil configuration that was randomly defined for use in
that generation. The 128 search space positions represented in that swarm
(neural networks capable of controlling apices) are used to grow 128 roots in
each of the 200 soils. Blue dots indicate the performance achieved by a single
root in one soil. The green line connects the maximum performance values
achieved by any neural network in the swam, in each of the 200 soils. The
average of all those values, 86.40, provides an indication of what might be
achievable in those soils. The light-blue line, in contrast, connects only the
performance values of the controller among the 128 that achieved on average
the highest performance. We see instances where the best controller was also
the top performer for a given soil, but we see equally situations where it was
greatly outperformed by other controllers in the swarm.

As previously discussed, PSO moves particles into new positions in the
search space based on their current positions, and memories of best positions
visited by a subset of particles. Errors in estimations of objective fitness val-
ues will cause the algorithm to misguide particles. The more root growth
simulations we perform per ANN, the lower our uncertainty will be, but that
certainty is bought at the cost of increased computation time. Handling this

55



Figure 4.2: Testing the estimation of apex controller’s objective values: a
swarm of 64 particles (128 search space positions) is here (re)evaluated at the
end of a generation on a set of 200 randomly generated soils (•: performance
of one root in a given soil).

trade-off is an important design decision when configuring the optimizer. We
opted to simulate every ANN over 250 randomly generated soil conditions
per generation. This value is significantly higher than the number of sim-
ulations traditionally conducted in evolutionary robotics, which in theory
should allow for optimization to produce better and more robust solutions.
Still, as shown in Figure 4.5, a 4-fold increase in the number of simulations,
to 1000, already changes the landscape in terms of particle’s performance.
The optimization process is still sometimes being misled, and taking parti-
cles into inferior locations of the search space. We can take the perspective
that the algorithm is performing a greater degree of exploration, and account
for it by letting it run for a higher number of generations. This consideration
led us to the setting of 250 generations per optimization run.

4.4.2 Standard test set

In order to get a more accurate assessment of the relative performances of
different apex controllers found in different experiments, we defined a large
set of 104 random soil configurations to serve as a common basis for use in
comparison. As we are using in the soil simulator a random number gener-
ator with a period of 264 − 1, the odds of the soils in the standard test set
having been used during optimization are extremely low. The standard test
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Figure 4.3: Evaluation of the performance of a controller that has apices
taking random growth decisions, on the 104 soil configurations in the stan-
dard test set: histogram of the performance values achieved by the grown
roots (mean: 1.435, standard deviation: 2.582). Compare with the results
for the best found controller, shown in Figure 4.6.

set then provides a common base of soil configurations to which controllers
were most likely not exposed before. Through it we can test different con-
trollers’ learned generalization. Furthermore, as the same set is used to test
multiple controllers, we lower the risk of selecting an inferior controller due
to having subjected it alone to a simpler set of soil configurations. We do
keep to some degree, however, the risk of picking a common set that is not
fully characteristic of the full set of possible soil configurations, that thus
leads us to selecting worse controllers that happen to be better performers
under those uncharacteristic conditions.

Figure 4.3 shows the performance values achieved on the standard test
set by a controller that has apices taking random decisions every time they
are updated. Apices choose uniformly at random one of the three actions
available to them, and in case the decision involves elongation or branch-
ing, the direction in which the new segment(s) will grow is also chosen
uniformly at random from the six available. As we can see, especially by
comparison with Figure 4.6 which presents performance values achieved by
the best found controller on the same set of soils, random growth decisions
blindly guide apices into soil patches from which not enough materials can
be extracted, and the root then becomes starved of materials, unable to pay
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for continued growth. This provides a baseline against which the learning
achieved by the optimizer can be compared.

The exact details on how to construct our test set are given in the Ap-
pendix C.

4.5 Experimental results

The optimization of apex behaviours was conducted through 10 separate
experiments, each optimizing neural networks over 250 generations. Each
generation, 98 particles were evaluated on 250 random soil configurations.
In total, over 61 million root growth simulations took place. Each simulation
iterated over 200 time steps, resulting in a total of over 12 billion time steps
computed in the cellular automaton of soil and root dynamics. Considering
the root growth simulations we conducted had been occurring in the real
world, in a piece of land where 10 thousand herbaceous plants such as the one
we considered are born every year, the root growth behaviour we obtained in
the end would have been the outcome of 6125 years of evolution. Simulation,
fortunately, allows us to get to the result in a smaller amount of time.

The cellular automaton of soil and root dynamics was implemented in
C (compiled with GCC 4.4.0, using the options -O3 -march=native), and
the code implementing the optimization process was implemented in Python
(version 2.6.4). As none of the code was parallelized, optimization ran se-
quentially on a single core of an Intel Core 2 Duo E8600 processor (3.33
GHz, 6 MB L2 cache) over a span of 5 days and 10 hours. Disregarding
the cost to execute the Python code handling the particle swarm during the
optimization process, on average the 200 time steps of a full root growth
simulation were computed in 7.65 milliseconds. The 250 root growth simu-
lations over which every neural network apex controller was simulated once
per generation were thus completed on average in 1.9 seconds.

Figure 4.4 shows how performance progressed across generations in these
experiments. We see a steady increase in performance, slightly slowing down
after generation 200. As performance is a random variable, we see the best
solutions’ quality values varying stochastically across generations, as the
randomly generated soil conditions considered every generation are simpler
or harder to explore than average.

The effects of noise in the objective function can be mitigated, but never
fully avoided. Figure 4.5 shows the objective values of all positions encoded
in a swarm at the end of optimization. It gives us a more detailed snapshot
of the final performance values of particles in the swarm which produced the
best controller, from among the 10 experiments depicted in Figure 4.4. We
see for instance, in the final column, the best particle’s previous best posi-
tion having a performance value of 59.76 (estimated after the optimization
process’ last generation, over a set of 250 soils), falling to 57.16 when it is
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Figure 4.4: Evolution of best and mean performance values in the population
(averaged over 10 optimization runs).

retested on a different set now with 103 soils, and we see in Figure 4.6 this
same controller measured as having a performance of 58.41 when retested
over the 104 soils in the standard test set.

Though by the 250th generation the swarm is expected to have mostly
converged on a single area of the search space, we see from the difference in
performance values of current and previous best positions in Figure 4.6, that
small steps in the search space are leading to significantly worse-performing
behaviours. This illustrates the complexity of the task at hand. We are
optimizing a dynamical process of root construction, where slightly different
decisions can take the system down different paths, having a cumulative
effect, and leading to very different outcomes.

Figure 4.6 shows the histogram of performance values of roots grown
using the best found apex controller, on the 104 soils in the standard test
set. It makes clearer something that could already be observed in Figure
4.2: the parameterization used (Section 3.4) to configure the generator of
random soil configurations (Section 3.1.3) causes a great number of soils to
have insufficient materials in the vicinity of the seed, that might allow for
the root to grow well beyond its starting location in the soil. The initial
amounts of materials in the seed allow for only a few segments to grow1. If

1Both the single shoot segment, and the initial root segment have all their state vari-
ables initialized to 1.0. These amounts could potentially pay for the growth of 20 segments
(at the cost of 0.1 in each state variable to grow every new segment), however, at the same
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by the time the materials in the seed are depleted, the root has not secured
access to sources from which it can extract additional materials, it is then
not able to grow anymore, and performance will then be only slightly above
0.0. As the root needs to secure enough amounts in simultaneously the three
types of materials, any single one of them might become a limiting factor to
the root’s development. Figure 4.8 shows such a situation, where the lack of
Nitrogen (and also Water, though to a lesser degree) is limiting the root’s
capacity to grow and branch. In this case, the root was able to extract
enough materials to cover the elongation costs, up to the point in which a
rich patch of Nitrogen is identified. From that point onwards the root was
no longer constrained, and it was then able to branch abundantly, and to
extract a high amount of materials.

Figures 4.7–4.14 show 8 distinct initial soil configurations, and the roots
grown on them, always through application of the exact same apex con-
troller (the best neural network found in the optimization experiments).
These roots show a remarkable degree of phenotypic plasticity, with the de-
velopmental process being highly influenced by the characteristics of the soil
the root is growing on.

Individual root segments are shown in each panel with a thickness pro-
portional to the amount of that specific state variable it contains internally.
We therefore see, for instance, in Figure 4.7 the left part of the root han-
dling most of the plant’s extraction of Water, while Phosphorus is obtained
mostly by the right side.

time that the the root is growing, diffusion with the shoot is taking outside the simulation
up to 0.25 in each state variable per time step. The number of segments the root is capable
of growing without extraction of materials from the soil is therefore well below 20.

61



Water Nitrogen Phosphorus

Root performance: 61.93

Water Nitrogen Phosphorus

Figure 4.7: A root growth simulation at times t = 0 and t = 200.
The root extracted (58.27, 53.95, 73.56) out of a soil initially holding
(555.59, 542.37, 499.89), a fraction of (0.10, 0.10, 0.15).

Water Nitrogen Phosphorus

Root performance: 63.56

Water Nitrogen Phosphorus

Figure 4.8: A root growth simulation at times t = 0 and t = 200.
The root extracted (61.17, 59.08, 70.43) out of a soil initially holding
(503.25, 461.58, 630.45), a fraction of (0.12, 0.13, 0.11).
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Water Nitrogen Phosphorus

Root performance: 70.00

Water Nitrogen Phosphorus

Figure 4.9: A root growth simulation at times t = 0 and t = 200.
The root extracted (67.28, 74.30, 68.43) out of a soil initially holding
(539.82, 647.66, 533.81), a fraction of (0.12, 0.11, 0.13).

Water Nitrogen Phosphorus

Root performance: 75.75

Water Nitrogen Phosphorus

Figure 4.10: A root growth simulation at times t = 0 and t = 200.
The root extracted (75.86, 61.79, 89.59) out of a soil initially holding
(576.32, 434.68, 639.24), a fraction of (0.13, 0.14, 0.14).
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Water Nitrogen Phosphorus

Root performance: 147.93

Water Nitrogen Phosphorus

Figure 4.11: A root growth simulation at times t = 0 and t = 200.
The root extracted (148.67, 144.07, 151.06) out of a soil initially holding
(549.02, 559.70, 608.57), a fraction of (0.27, 0.26, 0.25).

Water Nitrogen Phosphorus

Root performance: 150.30

Water Nitrogen Phosphorus

Figure 4.12: A root growth simulation at times t = 0 and t = 200.
The root extracted (141.47, 153.93, 155.49) out of a soil initially holding
(571.63, 475.38, 620.46), a fraction of (0.25, 0.32, 0.25).
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Water Nitrogen Phosphorus

Root performance: 159.26

Water Nitrogen Phosphorus

Figure 4.13: A root growth simulation at times t = 0 and t = 200.
The root extracted (171.60, 146.51, 159.67) out of a soil initially holding
(640.96, 394.91, 538.43), a fraction of (0.27, 0.37, 0.30).

Water Nitrogen Phosphorus

Root performance: 190.15

Water Nitrogen Phosphorus

Figure 4.14: A root growth simulation at times t = 0 and t = 200.
The root extracted (222.29, 167.12, 181.04) out of a soil initially holding
(573.14, 495.86, 541.69), a fraction of (0.39, 0.34, 0.33).
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Chapter 5

Sensor Web deployment in
unknown environments

In a paper from 2001 [Delin and Jackson, 2001] a new concept for an instru-
ment capable to explore unknown environments is introduced: the sensor
web. In the original words of the authors “The confluence of the rapidly ex-
panding sensor, computation, and telecommunication industries has allowed
for a new instrument concept: the Sensor Web. A Sensor Web consists of
intra-communicating, spatially-distributed sensor pods that are deployed to
monitor and explore environments. It is capable of automated reasoning for
it can perform intelligent autonomous operations in uncertain environments,
respond to changing environmental conditions, and carry out automated di-
agnosis and recovery”. The fundamental difference between this concept
and a distributed sensor network is the presence of direct communication
between sensors (commonly called Pods) [Delin, 2005] and the use of the
sensing information to reconfigure continuously the network tasks. Other
popular words describing similar concepts are, thus, intelligent distributed
sensor networks, reconfigurable sensor networks and so on.

5.1 Task definition

The collective robotic task considered in this project consists in the deploy-
ment of a sensor web. We consider a large number of simple robots (or Pods)
with limited capabilities, that must self-deploy from a central location and
operate into a previously unknown terrain as to form a sensor web. Decision
making should be fully decentralized and based on the environment percep-
tual clues. An homogeneous collection of Pods is assumed, where all may
therefore assume all available role types. Collective performance should be
resilient to individual failures.

Once deployed, the Pods are assumed to remain at their location for
some time, conducting whatever scientific work they are tasked with. Once

66



- 2 - 

energy harvesting devices, and computation devices to run the protocol schemes and provide for local data analysis.  The 
penultimate goal of a Sensor Web is to extract knowledge from the data collected and adapt and react accordingly.  Although 
the computation hardware in a pod can be quite sophisticated, it is the sharing of information among the pods that gives the 
Sensor Web a macrointelligence.  Intelligence in the human brain is created because of a complex, inhomogeneous network 
of neurons2 and not because of individual intelligence from each neuron.  Similarly, the Sensor Web is an instrument where 
greater functionality is derived from a parallel-type architecture as sensor measurements (including pod location) are passed, 
and collectively interpreted, from pod to pod.  This global sharing of information will lead to pod synergism (the whole of 
their activity being greater than the sum of their parts) by permitting intelligent resource (power, bandwidth, consumables) 
management by the web, and allowing for self-modifying behavior based on environmental factors and internal web 
diagnostics. 
 
The wireless communication between pods is 
presumed to be omni-directional.  Unlike star-
network configurations where data collected from 
all pods is passed directly to a central point, 
information within the Sensor Web is passed to an 
uplink point, denoted as a prime or mother pod, 
by hopping it from pod to pod.  In other words, 
data from various pods are shared as well as 
communicated throughout the entire web.  The 
overall protocol is quite simple.  Information is 
obtained at each pod via two routes:  (a) direct 
measurements taken by local sensors at that pod 
and (b)  information gathered by other pods and 
communicated throughout the web.  The key 
concept is that there is no artificial differentiation 
between the two types of information.  The 
protocol then is to simply rebroadcast the data 
(actual measurements) or information (digested 
data) to any pod within communication range.  
Any information received at a mother pod is not 
rebroadcast to the daughter pods and disappears 
from the web at this point although it is accessible 
to an outside user or another mother pod. 
 
NASA has occasionally referred to a group of orbiting satellites as a “sensor web”.3  Although this system could be a type of 
Sensor Web, it is only a subset of the general concept.  The connotation of the term “Sensor Web” has a much broader scope 
and extends from ultra-large-scale in situ instruments to correlated remote measurements (such as local spectroscopy) to the 
coordinated flying (swarming) of distributed spacecraft and everything in between.  It is thus too restrictive to say that the 
Sensor Web concept is a design for an Internet for satellites or an in situ instrument, since it can be either one. 
 
2.1 Sensor Webs versus Distributed Sensors 
 
Sensor Webs are often confused with projects that fall under names such as “distributed sensors” or “sensor networks”.  The 
most unique feature of the Sensor Web is that information gathered by one pod is shared and used by other pods.  Distributed 
sensors networks merely gather data and communicate it to an uplink point.  Examples include the seismology networks 
present in Southern California.  The information gathered by a particular pod on such a network typically does not influence 
the behavior of another pod.  Thus we find that distributed sensors collect data while Sensor Webs modify their behavior on 
the basis of the collected data.  There is a global, macroscopic “purpose” to data collection by Sensor Web pods that is not 
apparent in the distributed sensor network. 
 
The connectivity in a distributed sensor network is not as integral with its function as it is in the Sensor Web.  Unlike those in 
a sensor network, the individual pods in a Sensor Web matter to each other.  If, for example, one pod should cease 
functioning, its lost presence could cause neighboring pods to increase their sampling rate to gain in time resolution what has 
been lost in spatial resolution.  As a second example, consider a Sensor Web whose pods have some limited mobility.  By 
sharing information, the pods can position and reposition themselves along the gradient lines of the environmental parameter 

 
 
Figure 1:  Sensor Web concept as applied to an in situ terrestrial environment.  
The Sojourner rover of the Mars Pathfinder mission is provided for scale. Figure 5.1: One visualization of the sensor web concept, as shown in [Delin

and Jackson, 2001]. The rover was claimed to be in the image only to give
the scale to an otherwise in-situ terrestrial application

an assignment is concluded, the swarm is then free to regroup, collectively
move into another area of the planetary surface, and deploy again. This
process is repeated over the duration of the mission.

The tasks robots will perform might include for instance the foraging for
chemical or biological traces, monitoring of conditions over a period of time,
and the temporary formation of specialized antenna arrays. In this last ex-
ample, the swarm would be functioning as an antenna, and for that it would
need to self-organize into a configuration with maximal performance with
respect to local conditions affecting the signal, or to the relative positions
of the satellites they’d be communicating with.

The work described here then focusses on the definition of a communi-
cations protocol and a decision-making mechanism for autonomous deploy-
ment with a view to maximizing collective performance simultaneously with
respect to a set of multiple goals.

5.2 From ROOTS to RObOTS

The robotic swarm’s equivalent of the root apex is here designated as a
Mob. Mobs are groups of Pods that collectively move into a common target.
When they reach that target, the mob perceives the local and surrounding
conditions with regards to the set of criteria influencing its behaviour, and
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takes a decision about what to do next. The decisions we make available to
Mobs map exactly to the decisions apices have at their disposal in the roots
simulation: StayStill, Elongate, and ElongateAndBranch. These correspond
respectively to a Mob remaining at a location for some time, collectively
moving into a new target, or splitting in half, and having the resulting two
new Mobs moving into their own directions. As an example imagine a sensor
web consisting of N = 100 initially colocated Pods. We imagine they are all
delivered on an unknown planetary surface and left in the same area (i.e.
the landing site of a mother spacecraft). The deployment then starts and
the Mob (N = 100) starts taking a decision and a) move to another area,
b) branch itself into two Mobs and deploy, say, one Pod (the two Mobs will
then contain N = 50 and N = 49 Pods) or c) just wait. The process then
repeats up to when all Pods ar deployed and the “root system” is formed.
The decision taken by each Mob takes into account the global exploitation of
multiple criteria (resources) as sensed by the different Mobs. This decision is
taken by the exact same controller evolved in chapter 4 to model the growth
of a root system.

All robots have a unique numerical identifier assigned to them, and they
are always made aware of which other robots are moving together with
themselves in the same Mob. By way of these identifiers, robots are able to
autonomously take on their respective roles in the dynamics, at any given
time. A parameterizable number of robots in a Mob (connected to the
desired degree of redundancy), are recognized by all as the Mob’s leaders.
These are by definition the robots with the smallest numerical identifiers
from among those in the mob.

Whenever a branching decision occurs, the Mob’s leaders remain behind
to conduct at that location the work they are tasked with performing, but
also to serve from then on as communications relay units between those
robots (leaders) that had previously remained behind, and the leaders of
the two new Mobs now departing from that location. The hierarchy that
thus emerges in the swarm is in a sense implicit in it from the beginning (it is
a consequence of robots’ numerical identifiers), but the way it is instantiated
on the surface is a consequence of the conditions robots encounter as they
deploy, and the decisions they take as a result.

When moving from a root growth into a swarm deployment problem,
one has to take into account the fact that a robot is a scarcer resource than
a root segment. Roots can grow an unlimited number of root segments,
being constrained only by the amount of available materials. Once grown,
a root segment will from then on reside at a soil location with which it con-
tinuously interacts, and act as a communication channel between segments
preceding and following from it. The swarm, on the other hand, must use
its robots more sparingly as sensor webs are formed by a finite number of
Pods. As such, the decision was taken to leave Mob leaders behind only when
branching decisions occur, and never when the Mob’s decision is to elongate.
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Successive elongation decisions then result in more distant communication
channels being formed. This is a departure from the roots simulator, where
communicating entities always explore contiguous soil patches.

A further significant difference between the roots simulator and the de-
ploying sensor web, is that while in the first the soil is physically altered
by the roots’ activity, with those changes constituting an important stig-
mergic communications channel with an impact on apices’ behaviour, in the
second robots will hardly be given the capability to permanently affect the
surface in ways other robots can interpret and act upon. In a Moon mission
where tracks left by robots persist in the soil, the visual perception of the
amount of tracks in an area might provide robots with this informational
cue. However, given we wish not to constrain the applicability of the system
described here, we prescribe that robots in our swarm will autonomously
build and use a difference map, which they continuously update based on
their actions, and by merging with the difference maps of the robots they
communicate with. This difference map biases perception of conditions in
robots’ surroundings. An area that by itself is perceived as being extremely
interesting, will be ignored if as a robot approaches it its difference map
informs it that others have previously explored the area extensively, just as
an apex will ignore a soil area that was once rich in materials, but was since
depleted by other root segments. The problem of distributed map building
by robot collectives is a standard research problem out of the scope of this
work, and was therefore not studied here. For simplicity, in our robotic
simulation a single centralized difference map was thus used.

5.3 Communication and decision making in the
Robots Swarm

The flow of information in the robots swarm is analogous to the diffusion of
water and nutrients inside a root. Each root segment diffuses water and nu-
trients with those segments contiguous with it in the root structure. Matter
extracted from the soil thus spreads from locations of high concentration
to the parts of the communication channel where they are scarce. In the
robotics simulation, “extraction” translates to the generation of signals tak-
ing into account the base values robots perceive in their vicinity on the
multiple variables they measure. These signals are influenced by (and in
turn influence) the difference map mentioned in the previous section, so as
to emulate permanent extraction of the currently available materials in the
surrounding soil. Signals are then sent through the communication channel
robots establish. Deployed robots, along with moving mob leaders are thus
continually participating in processes of resource extraction and internal
diffusion.

When a mob reaches its chosen target, it perceives its surroundings.
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This can either be achieved as a fusion of the sensor values obtained from
all robots in the mob, or simply as a selection of the values perceived by a
single robot, such as a mob leader. Having the mob produced a single per-
ception vector, and given their commonly shared deterministic controller,
each robot in the mob could then separately reach the same conclusion on
what the appropriate course of action would be. Because in the roots ap-
proach behaviour is conditioned also by values diffused through the swarm, a
process on which only mob leaders participate (as mentioned in the previous
paragraph), decision making in the mob was thus restricted to the leaders,
which already possess the required information. In our current implemen-
tation, mob leaders use the values they perceive in their surroundings, with
no fusion with values from remaining robots in the mob taking place. In
future work sensor averaging could be implemented, as it can eventually
contribute to more reliable decision-making in the context of noisy sensory
information, or sensor failure.

Whenever a common decision must be reached in the mob, the mob then
produces a common perception vector, the mob leaders use it to decide on
the appropriate course of action, given their behavioural controllers, and
broadcast it through the mob.

5.4 Transfer of apex controllers

The degree of similarity between the root growth and swarm deployment
problems is such that the controllers previously trained for the apices can
be reused to control the robots with no modifications. This section pro-
vides the correspondence between apices’ and robots’ perception vectors,
and discusses issues that arise from such reuse of the controllers.

5.4.1 Mapping of perceived variables

The three variables modeled in the soil and root simulation (Water, Nitrogen
and Phosphorus) represent resources the root needs to acquire, in amounts
that should preferably be as high as possible. In the swarm deployment
problem, these translate into measurements of characteristics in the plane-
tary surface that are of scientific interest to the mission. The swarm has to
locate in the surface as many interesting areas as possible, having as high in-
terest values as possible. As in the case of the root, the robots swarm is also
pursuing multiple objectives at the same time. It is therefore not acceptable
for the swarm to focus on the satisfaction of one goal at the expense of the
remaining ones.

Robots generate perception vectors matching the syntax that was de-
scribed in Section 4.1 for the root growth simulation. Sets of values in all
the scientific interest criteria are measured internally in the Mob’s commu-
nication channel, in the surface area in which the Mob finds itself, and then
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in six directions around the Mob, evenly spaced and spanning the range of
360◦. The values characterizing scientific interest in a given direction sum-
marize the quality of a patch of land, as observable from the Mob’s current
location, and up to a distance consistent with robots’ sensors’ capabilities.
A movement decision takes a Mob from one location into the centre of a
patch of land lying in one of those six directions. The hexagonal struc-
ture imposed on the soil in the root simulation is thus also imposed on the
planetary surface.

5.4.2 Challenges in controllers’ transfer from roots to robots

Given a perception vector characterizing a robot’s context, action selection
takes place by feeding it through an apex controller. The differences that
do exist between the two application scenarios, root growth and swarm
deployment, result in some of the controllers’ behaviours to be less suitable
for the domain they are transferred to. These challenges in the controllers’
transfer are described next.

Gravity bias

Gravitropism, in biology, is the tendency displayed by roots to grow in the
direction of gravitational pull (i.e., downward), and for stems to grow in the
opposite direction (i.e., upwards).

In our modeling of root growth gravitropism was not implemented through
any explicit mechanism. Its effect is though present in an implicit form. It
arises out of a combination of the model’s tuning, and the pressure in the
fitness function for maximizing the extraction of materials. Upwards root
growth is most of the time disadvantageous to the apex in the short term, as
most of the time there are already root segments above, depleting the soil
resources. Given the gradual variations in resource availability over con-
tiguous soil patches, the depletion of resources often makes the unexplored
patches more attractive, resulting in a tendency for apices to move as a wave
away from already occupied locations. Besides that, by tuning in the simu-
lator narrow soil dimensions, and a simulation time big enough for roots to
be capable of reaching the edges of the simulated soil, we created conditions
whereby the investment in lateral root growth becomes disadvantageous in
the long term. Investing more in moving sideways or upwards, apices would
at some point in the simulation reach the edges of the simulated soil, from
which they had nowhere else to move unless they were to go through the in-
efficient process of growing segments through soil patches already occupied
by other root segments, so as to reach unvisited soil areas. Those apices
could then no longer efficiently help the root in extracting more materials,
and thus increase fitness. By spending instead those resources required for
growth in downwards movements, an apex would have a greater chance of
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contributing to a more significant increase in the root’s efficiency, just be-
cause in that direction the segment would have access to a greater area of
soil. Taken together, evolution was thus led to produce controllers with a
tendency for downwards movement, in effect reproducing the effect of grav-
itropism. Evolution was able to implement into controllers this tendency for
following the gravity gradient through an assignment of greater importance
to values in the perception vector coming from neighbouring directions with
indexes 2 (south-east) and 3 (south-west), than to values coming from the
remaining directions.

Though biologically accurate, when transferred into a problem of de-
ployment on a planetary surface, this behaviour leads the swarm to have a
preferable movement direction, and therefore to potentially fail in the iden-
tification of interesting areas not along that direction. A way to address
this deficiency is to see soil in the root simulator not as a depth-cut, but
instead as a top-down view, to place the seed in the centre of the soil, rather
than at the top, and to re-optimize controllers. During simulation, apices
are then exposed to a greater diversity of conditions, having optimal di-
rections for growth more uniformly spread around the apex. Experiments
performed with this configuration were conducted, producing the desired
results. Those experiments are not reported here, first due to an intention
to keep the consistency with the biological model, and second because a
preferable movement direction provides a potentially useful way to exter-
nally influence the swarm’s behaviour.

By changing the way the perception vector is built, and adjusting the
decoding of growth directions coming out of controllers’ selected actions,
one can adjust the swarm’s preferable movement direction. As explained
in Section 4.1, north-east is the first neighbouring direction to be perceived
(index 0), with the remaining directions being perceived in clockwise order
up to north-west (index 5). The obtained controllers consider more heavily
the values of variables perceived in directions 2 and 3 (followed by 1 and 4).
By rotating the order in which directions are perceived, whichever directions
end up with indexes 2 and 3, will get greater consideration. As an example,
if robots were to start by perceiving south-west, then rotate clockwise until
reaching south-east, the swarm’s preferred direction for movement would
then be north-west (the new direction 2) and north-east (direction 3).

Excessive branching bias

In the roots simulation, the more apices branch (provided they have the
materials to pay for growth’s energetic costs) the greater will the root’s
coverage of the soil end up to be, thus resulting in a greater performance
value. However, in the robotics application, an excessive number of robots
would then be required to replicate the same behaviour.

To successfully transfer the apex controllers, we set robots to cancel
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branching orders (though keeping the elongation order intact) when they
are present in very poor areas, in terms of having low scientific interest
values. Branching, with its depletion of number of undeployed robots, was
thus only allowed to occur when a bigger gain was to be had.

5.5 Robotics simulator

Figures 5.2-5.5 show top-down views of swarm deployments on distinct plan-
etary surfaces, at different points in time, always using as behavioural con-
troller the best Neural Network evolved in the roots simulation. The white
trails show the paths taken by robots during their exploration of the surface.
The three panels to the left provide different perspectives on the arena in
which the robots are being deployed. They display the scientific interest
of different surface areas, as evaluated according to three different criteria.
Color intensities are tied to the degree of an area’s scientific interest (in that
criterion), with darker areas representing lower scientific interest. As in the
roots model, this information becomes accessible to robots only when they
reach an area’s vicinity, and decisions are thus taken based on local infor-
mation. As the swarm deploys, it builds the surface quality difference map,
which emulates the resource extraction performed by roots. The swarm’s
gradual decreasing of the quality of areas on which robots have already de-
ployed is perceived by others, and their behaviour self-adjusted accordingly.
This way, the swarm scatters itself through the surface, instead of clustering
all around the most interesting of the identified surface areas, continuously
exploring as long as it has enough non-deployed units capable of doing so.

A degree of gaussian noise is added in these simulations to robots’ actua-
tors, something that was not present in the roots simulations. The individual
robots in a Mob share a common goal, but pursue it by their own means,
subjected distinct constraints on movement. A robot’s step towards a target
is subjected to random variations in direction and speed. The cumulative
effect is that robots in a Mob take different amounts of time to reach the
target, and reach it by taking slightly different paths. Because only Mob
leaders decide on the next action to be performed, the remaining robots in
the Mob wait at their current target until their leaders reach the same lo-
cation, perceive their context, and broadcast among the Mob their decision
of the action they should collectively perform next.

In figs. 5.2 to 5.5 we depict a few examples of the robot swarm model
over different conditions. Figures 5.2 and 5.3 show the swarm deployment
on the same scenario, but using a different number of robots. There are
256 robots in the first swarm, and 1024 in the second. The four frames in
each picture represent four stages of the swarm development, with similar
percentage of robots deployed in each case. We notice that both swarms
show a similar shape, adapting to the scenario. The larger swarm basically
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expands and intensifies the deployment observed in the smaller swarm.
In the second set of figures (5.4 and 5.5) we compare the swarm behavior

in different scenarios. In both cases the swarm size is 256. The root model
deployment clearly shows that the robots tend to explore regions of higher
interest concentration, towards the right in fig. 5.4 and towards the left in
fig. 5.5. Also compare these two deployments with the one of 5.2.

Notice that each swarm tends to maximize exploration of the multiob-
jective problem consisting on three components represented on the left side
of the frames by the red, green and blue colors. These components consti-
tute different scientific interest criteria that a robot swarm must take into
account. They do not have exactly the same geographical distribution, and
therefore the swarm does not exactly overlay any of the criteria in partic-
ular, but tries to maximise them together. These scenarios were generated
randomly in order to illustrate the swarm’s dynamics under different envi-
ronment conditions.

74



Figure 5.2: Sensor Web deployment on scenario A (256 robots)

Figure 5.3: Sensor Web deployment on scenario A (1024 robots)

75



Figure 5.4: Sensor Web deployment on scenario B (256 robots)

Figure 5.5: Sensor Web deployment on scenario C (256 robots)
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Chapter 6

Conclusions

In this study we propose for the first time roots as a source of biological
inspiration for the design of the decentralised control system of a swarm of
robots performing a collective exploration task.

We have located a number of good reasons to consider roots as a biolog-
ical paradigm for robotic distributed exploration. Some of them are:

• Roots exhibit developmental plasticity; genetically identical plants
take different “decisions” if they grow in a different soil. This is the
case for autonomous robotic swarms that must shape and adapt their
behaviour according to the environmental conditions.

• The sensing mechanisms are located at the root apices. This can be
directly translated to the type of distributed sensing we encounter in
swarm robotic systems.

• The task of a root system can be seen as a solution to a complex
multi-objective optimisation problem; the root has to balance multiple
constraints and satisfy several needs (Water, Nitrogen, Phosphorus,
. . . ). This fact is in accordance with complex robotics applications
where multiple goals have to be achieved and multiple tasks have to
be completed either sequentially or at the same time.

The hypothesis we embrace is that root systems do possess an intelli-
gence that functions in a very similar manner to what is today commonly
referred to as ‘swarm intelligence’. They need this intelligence in order to
exploit soil resources and maximize the plant’s chances of survival. After
a thorough literature review on the state of knowledge botany has accu-
mulated on the dynamics of root composition and growth, we selected the
herbaceous type of plants (and root) as our candidate to successfully inspire
a robotic strategy, and we modeled this type of root growth in a cellular au-
tomata soil simulator. We then algorithmically designed the “intelligence”
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of each root apex using a neural network evolved to cope with different en-
vironmental conditions modeled in our soil simulator and we used the same
evolved neural network for a selected robotic task (i.e., the deployment of a
sensor web), mapping “one-to-one” our simulated root growth behaviour to
the robot deployment. This task can be considered part of a larger scenario
that includes a swarm of Pods being deposited at a central place on a plan-
etary surface, and which has to deploy in an efficient (by way of scientific
exploitation) way on the surface. Another possible task could be that of ac-
quiring a formation during a descent phase, after being ejected by a mother
spacecraft.

Our work is using a novel inspirational paradigm from nature, root sys-
tems, to design the control system of a group of autonomous agents set to
explore an unknown planetary surface. We must note that for the time
being the possibility of planetary exploration by swarms of simple agents
that collectively manage to perform complex tasks is still far in the future;
actual rovers are typically very complex machines that operate in a solitary
manner. However, should multi-agent systems be considered for exploration
tasks, our work could serve as a simple solution. Also, many other tasks can
be mapped to the growth of a root system as modeled here and we are just
beginning to understand which ones would benefit the most from this new
paradigm.

The second contribution of our research is on the biology of root growth.
We have successfully modeled roots as an ensemble of autonomous agents
(apices) which is able to adapt and regulate its morphology in order to op-
timally exploit its environment. To this end, we have designed a simulator
which takes into account the most important biological concepts. This sim-
ulator, coupled with evolutionary optimisation techniques can prove to be
a valuable tool to conduct in depth studies aiming to shed light on root
behaviour and biological questions that can hardly be answered with other
tools.
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Appendix A

Root structure:
implementation details

Our representation of the root architecture shares similarities with the Ex-
tensible Tree structure defined in [Lynch et al., 1997]. A major difference
between both is that in the Extensible Tree each root segment supports an
arbitrary number of children, while our structure limits the branching de-
gree to 2 (as previously mentioned). A shared similarity, though, is to be
found in the usage of memory pointers to maintain different lists relating
multiple root segments, so as to reduce the complexity of several operations
performed on the root. These lists are implemented in addition to the pre-
viously mentioned edges, which define adjacency between segments in the
root system.

Each root segment contains a pointer to the structure representing the
soil patch it is embedded on, and that soil patch in turn contains a pointer
to the first segment in a singly-linked list of all root segments embedded
in that soil patch. Each root segment contains additionally in its structure
a pointer to the following segment in that list. When a new root segment
grows into a soil patch, it adds itself to the head of this list, and sets its list
pointer to the previous first root segment in the list. This computationally
cheap process guarantees that we can at any time efficiently access all the
root segments in any given soil patch. That information is needed for the
implementation of soil→root diffusion (Section 3.3.3).

Each root segment encodes two additional pointers, which enable the
structure to potentially be a member of a doubly-linked circular list of all
the apices in the root. In other words, we have at all times a list of the
binary tree’s leaves. Non-apex root segments make no use of these pointers.
When an apex grows one or two new segments, it ceases to be considered an
apex. At that point, it removes itself from the list, and inserts its children
segments (apices themselves) in its place in the list. The importance of this
list lies in its enabling of efficient traversal through only those segments in
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the root which have the property of being apices, without the need to pass
through intermediate root segments. Given the distinct roles assigned to
root apices (Section 3.3.3), this makes their processing more efficient.

Finally, each root segment encodes also a state counter, which allows
for non-recursive stackless depth-first traversal1 through all segments in the
root system. Multiple processes in our simulation requiring iteration over all
root segments, such the as the root→root diffusion process (Section 3.3.3),
can this way benefit from having access to an iterator that is efficient in
terms of speed and memory.

1We refer to depth-first traversal not in the sense of soil depth, but in the traditional
sense of path length from the binary tree’s root (the shoot segment).
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Appendix B

Diffusion process:
algorithmic definition

Diffusion is implemented as a flow of materials from one donor into a set
of recipients. The donor defines how much it will deduct from its own state
variable, and how that amount will be distributed between the recipients.
If a recipient has a higher amount on the diffusing variable than the donor,
the donor takes no action towards it. That recipient, on the other hand,
might donate part of its value to the current donor at the time the diffusion
process is invoked with it as the donor.

All simulated entities (soil patches and root segments) assume the role
of donor every time step, at which point they potentially diffuse into their
neighbours. Diffusion takes into account the current states of all the par-
ticipants in the process, and increments values at those entities’ variables
corresponding to their state at the next time step. A great deal of an entity’s
state at the next time step is thus written not by itself but by its neighbours.
Note that every simulated entity participates as a donor in multiple diffusion
processes, one for each of its state variables (Water, Nitrogen and Phospho-
rus).

Once all entities have taken their turn being donors, they all switch the
state variables representing their current and next time steps, thus advancing
the world’s clock by one iteration. As they do so, the state variables now
corresponding to next time step are reset to 0.0, so as to initialize their
values for the new iteration’s diffusion processes. These separate phases
of state and clock updating, coupled with the commutativity in the order
of state updates, implements a synchronous updating scheme, through an
asynchronous process. From the model’s perspective, all entities update
their state at the same time.

Table B.1 describes the sets of variables needed for a full characterization
of all participants in a diffusion process. A set of variables p is present in
all participants, be they donors or recipients. Their distinct nature does
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diffusion participant: p = {sm, st, st+1, d}
sm Amount assumed to be contained on the diffusion participant

at the current time step, if the participant is missing from the
simulation (if it is not an explicitly simulated entity).

st The diffusion participant’s current state.
st+1 The diffusion participant’s state at the next time step.
d Amount diffused from/into this participant in the current call to

the diffusion procedure.

donor: d = p ∪ {k, omax}
k Minimum amount kept by the donor. Only amounts in excess of

this value will be available for diffusion.
omax Maximum amount this donor is capable of diffusing out of itself

per time step.

recipients: r = p ∪ {c, imax}, R = {r1, r2, . . . , rn}
c The recipient’s holding capacity.
imax Maximum amount this recipient is capable of receiving into itself

per time step, from a single donor.

Table B.1: Characterization of the variables defining participants in a diffu-
sion process. A call to DIFFUSE(d,R) writes each participant’s pst+1 and pd
variables. All other variables are taken only as inputs.

however cause them to require a set of additional variables, characteristic
of their role. Some of these variables are set to the system-wide parameters
that define that specific diffusion process. Prior to a call to DIFFUSE(d,R),
each participant is then wrapped into a structure where several variables are
already set, and the remaining ones are either read or dynamically calculated
from the participant’s current context. Implementation-wise, pst and pst+1

are handled as pointers into the memory locations where one of the entity’s
state variables lies. By setting these pointers, the wrapping structure is
made aware of the particular entity it will represent in the diffusion process.
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We next present in detail the DIFFUSE(d,R) procedure that implements
the diffusion process.

Algorithm 1 Get donor’s state and amount available for diffusion

1: procedure Diffuse(d, R)
2: if d exists in the model then
3: ds̃t ← dst

4: else
5: ds̃t ← dsm

6: end if
7: dd ← min(max(0.0, ds̃t − dk), domax)

Lines 2–6: We start by loading ds̃t , the donor’s current state. For most
cases, this value is read from dst . In cases where the donor is not an
explicitly simulated entity, the value is read from dsm . As examples of
this situation, we might consider Carbon diffusing from the shoot into
the root, or rain water falling into the first layer of soil.

Line 7: dd is initialized to the maximum amount this donor might poten-
tially diffuse out in the current time step. From the total in ds̃t , up
to some amount dk will not be available for diffusion, as the donor
keeps it for himself. As an example, consider water retention by a soil
patch, that is capable of diffusing out only when water content exceeds
a certain degree of saturation. Physical limitations will at the other
end impose an upper bound domax on the amount the donor can diffuse
out of itself in the time span corresponding to the transition between
consecutive time steps.

If the amount in the donor at the diffusing state variable is such that
diffusion out of it is possible, the next step is then to determine how much
each recipient would individually require from that amount, so that over time
all donor–recipient pairs would potentially converge on the same amount.

Lines 10–14: The considered recipient’s current state rs̃t is read in the
same way as the donor’s current state was read in lines 2–6. Recipi-
ent entities not explicitly modeled in the simulation are therefore also
supported. As examples of such situations we might consider the diffu-
sion of materials extracted by the root into the shoot, or water flowing
below the last simulated layer of soil.

Lines 15–16: Diffusion occurs in the direction of greater to lower concen-
tration. If a recipient has a higher amount on the diffusing variable
than the donor, the donor takes no action towards it. This procedure
implements diffusion only out of the donor and into the recipient. A

83



Algorithm 2 Determine amounts requested by recipients
8: if dd > 0.0 then
9: for all r ∈ R do

10: if r exists in the model then
11: rs̃t ← rst

12: else
13: rs̃t ← rsm

14: end if
15: if ds̃t ≤ rs̃t then
16: rd ← 0.0
17: else
18: rd ← min(ds̃t−rs̃t

2 , rimax)
19: if rs̃t + rd > rc then
20: rd ← max(0.0, rc − rs̃t)
21: end if
22: end if
23: end for
24: dd ← min(dd,

∑|R|
i=1 r

i
d)

25: end if

flow in the opposite direction will take place when diffusion is executed
with that recipient assuming the role of donor, but only if neighbour-
hoods are symmetrical for a given state variable’s diffusion involving
entities of those types (Phosphorus diffuses from the soil into the root,
but not the other way; in between neighbouring root segments how-
ever, Phosphorus flows in both directions). Note we consider in the
comparison not dd, the actual amount the donor is capable of diffusing,
but ds̃t , the complete amount if holds.

Lines 17–18: Given the donor has an higher amount than the recipient, we
start the process for determining how much the donor will allocate to
this specific recipient. The implemented strategy tries to allocate an
amount proportional to the difference between both entities’ amounts,
so that the greater the difference, the more will be diffused, and then
have the diffusion rate decrease over time as values equalize. This
quantity allocation must then be constrained by rimax , the maximum
amount this recipient is capable of receiving into itself per time step,
from a single donor.

Lines 19–21: The amount diffused into a recipient should not cause it to
exceed rc, its holding capacity. However, this process is intentionally
blind to how much will also diffuse into the recipient from its other
donors, and how much it will retain once it donates its share. Un-
der some circumstances, the recipient may therefore still accumulate
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more than it regularly would be able to. This independence between
different diffusion processes is required for their order of execution to
be commutative, and so for synchronous state updating to be achiev-
able. Consider the deadlock conditions that would arise from having
two entities, donors to a third, conditioning their diffused amount by
the amount the other would diffuse. The explicit enforcement of strict
holding capacity limits on diffusion participants would significantly
increase the process’ complexity, and is therefore not implemented.
We instead rely on the fact that these excesses will self-correct over
time, by the recipient’s donations into its own neighbours. Such a de-
cision is defensible from a biological perspective, given the existence
of supersaturated states in nature. We do implement here instead the
handling of individual diffusions that would by themselves cause this
constraint to be violated. We will in those cases only allow diffusion
of up to the amount needed to reach the recipient’s holding capac-
ity. The max() function is used here precisely to take into account
those potential situations where the recipient is already oversaturated
(rs̃t > rc). Diffusion into such a recipient is thus canceled.

Line 24: Should recipients have requested in total an amount below the
maximum the donor could diffuse out of itself in the current time
step, dd would then be overwritten with that total. The donor would
be able in such a situation to fully meet all requests from its recipients.

Having paired the donor in turn with each recipient, we now know which
amounts would ideally diffuse into them in the current time step, so that
time to state equalization between all entities would be minimized. Given
the donor’s potential incapacity to meet all of its recipients’ requests, the
time now comes to look at recipients as a whole, and to distribute between
them dd, the total diffusing out of the donor, so that each will receive in
proportion to its need.

Lines 26–29: If dd = 0.0, then either the recipients are not asking for any
amounts, or the donor cannot currently diffuse anything out of itself.
Either way, we inform recipients that they collected no amounts in the
current diffusion.

Lines 30–33: The amount to be diffused must now be split between recipi-
ents, in a way that tries to satisfy as best as possible all their individual
demands. rd is then at this stage used to represent the ratio of the
amount to be donated that would best match the recipient’s request.
Should the recipient request more than the total the donor can give,
the ratio that would best satisfy the request is then set to 1.0. This
bounding brings domax to bear on the amount to be diffused into the
recipient.

85



Algorithm 3 Allocate and transfer diffusible amount to recipients
26: if dd = 0.0 then
27: for all r ∈ R do
28: rd ← 0.0
29: end for
30: else
31: for all r ∈ R do
32: rd ← min(1.0, rddd

)
33: end for
34: ratios sum←

∑|R|
i=1 r

i
d

35: for all r ∈ R do
36: rd ← rd

ratios sumdd
37: if r exists in the model then
38: rst+1 ← rst+1 + rd
39: end if
40: end for
41: end if

Lines 34–36: Ratios of amounts requested by recipients are now normal-
ized over the sum of all such ratios. We are then allocating per re-
cipient the closest possible value to what it requested, that takes into
account the remaining recipients’ requests. The sum of normalized
ratios over all recipients naturally equals 1.0, meaning the process is
able to fully allocate the amount dd to be distributed. Also signif-
icant is that the process never allocates to a recipient more than it
requests. At this stage, rd is then overwritten with the final amount
to be diffused from the donor into that specific recipient.

Algorithm 4 Update the donor’s state with the retained amount
42: if d exists in the model then
43: dst+1 ← dst+1 + ds̃t − dd
44: end if
45: end procedure

Lines 37–39 & 42–44: Having all amounts pd diffusing in and out of all
participants been defined, we are now at the stage where diffusion can
actually be carried out. As previously mentioned, state variables are
read from pst and written into pst+1 . Also, as explained concerning
the update scheme, as the transition between time steps is carried
out, state variables corresponding to the new pst+1 are reset to 0.0.
Entities then contribute to the definition of each other’s state at the
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next time step by incrementing pst+1 with the outcomes of all diffusions
the entity participates in. In those situations where the participant is
not being fully simulated, no state variable is updated (its current
state wasn’t really in the simulation to begin with, having been read
from psm). Still, upon return from the procedure, pd will contain how
much would have diffused from/into the entity. This value might then
be collected for statistical or other purposes, such as the measurement
of the amount of materials diffusing into the shoot.
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Appendix C

Constructing the standard
test set

We give here all the information needed to reconstruct, using the Python
programming language, the set of 104 soils configurations we used as the
standard test set to evaluate our controllers in Chapter 4.

The simulator of soil and root dynamics implements Marsaglia’s 64-
bit Xorshift Method [Press et al., 2007; Marsaglia, 2003] (configured with
a1 = 21, a2 = 35, a3 = 4) for random number generation. The code below
creates a vector of 104 numbers, which are then used as the random number
generator seeds for each of the 104 root growth simulations.

The seed used below to initialize the random number generator instance
in Python was an arbitrary choice taken so we could hardcode a process
that would generate every time the same sequence of 104 numbers.

rng = random.Random( 14523725371007509729L )
Seeds = numpy.array(

[ rng.getrandbits(64) for i in xrange( 10**4 ) ],
dtype=numpy.uint64 )

For reference, the configuration shown in Figure 3.3 was obtained by ran-
domly defining each peak’s coordinates, height and decay rate, in sequence,
starting from the random number generator seed 15160848958779875793.
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